Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.15612
Cited By
GlanceNets: Interpretabile, Leak-proof Concept-based Models
31 May 2022
Emanuele Marconato
Andrea Passerini
Stefano Teso
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GlanceNets: Interpretabile, Leak-proof Concept-based Models"
9 / 9 papers shown
Title
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
39
0
0
28 Apr 2025
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
54
0
0
24 Apr 2025
Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
Nishad Singhi
Jae Myung Kim
Karsten Roth
Zeynep Akata
18
1
0
02 May 2024
Understanding Multimodal Deep Neural Networks: A Concept Selection View
Chenming Shang
Hengyuan Zhang
Hao Wen
Yujiu Yang
20
5
0
13 Apr 2024
Exploring the Lottery Ticket Hypothesis with Explainability Methods: Insights into Sparse Network Performance
Shantanu Ghosh
Kayhan Batmanghelich
13
0
0
07 Jul 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
10
7
0
18 Dec 2022
Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations
Wolfgang Stammer
Marius Memmel
P. Schramowski
Kristian Kersting
76
25
0
04 Dec 2021
Conditional Gaussian Distribution Learning for Open Set Recognition
Xin Sun
Zhen Yang
Chi Zhang
Guohao Peng
K. Ling
BDL
UQCV
128
214
0
19 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
156
311
0
07 Feb 2020
1