ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15717
  4. Cited By
Estimating a density near an unknown manifold: a Bayesian nonparametric
  approach

Estimating a density near an unknown manifold: a Bayesian nonparametric approach

31 May 2022
Clément Berenfeld
Paul Rosa
Judith Rousseau
ArXivPDFHTML

Papers citing "Estimating a density near an unknown manifold: a Bayesian nonparametric approach"

12 / 12 papers shown
Title
Breaking the curse of dimensionality in structured density estimation
Breaking the curse of dimensionality in structured density estimation
Robert A. Vandermeulen
Wai Ming Tai
Bryon Aragam
16
0
0
10 Oct 2024
Nonparametric regression on random geometric graphs sampled from
  submanifolds
Nonparametric regression on random geometric graphs sampled from submanifolds
Paul Rosa
Judith Rousseau
23
1
0
31 May 2024
A theory of stratification learning
A theory of stratification learning
Eddie Aamari
Clément Berenfeld
25
0
0
30 May 2024
Beyond the noise: intrinsic dimension estimation with optimal
  neighbourhood identification
Beyond the noise: intrinsic dimension estimation with optimal neighbourhood identification
A. Di Noia
Iuri Macocco
Aldo Glielmo
A. Laio
Antonietta Mira
31
2
0
24 May 2024
Contraction rates and projection subspace estimation with Gaussian
  process priors in high dimension
Contraction rates and projection subspace estimation with Gaussian process priors in high dimension
Elie Odin
F. Bachoc
A. Lagnoux
19
0
0
06 Mar 2024
Posterior Contraction Rates for Matérn Gaussian Processes on
  Riemannian Manifolds
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
19
7
0
19 Sep 2023
Support and distribution inference from noisy data
Support and distribution inference from noisy data
Jérémie Capitao-Miniconi
Elisabeth Gassiat
Luc Lehéricy
9
1
0
19 Apr 2023
Rates of convergence for nonparametric estimation of singular
  distributions using generative adversarial networks
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
16
4
0
07 Feb 2022
Inferring Manifolds From Noisy Data Using Gaussian Processes
Inferring Manifolds From Noisy Data Using Gaussian Processes
David B. Dunson
Nan Wu
28
16
0
14 Oct 2021
A likelihood approach to nonparametric estimation of a singular
  distribution using deep generative models
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
14
17
0
09 May 2021
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
164
1,926
0
24 Oct 2016
Nonparametric ridge estimation
Nonparametric ridge estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
76
120
0
20 Dec 2012
1