ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00176
  4. Cited By
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization

Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization

1 June 2022
Dimitris Bertsimas
Wes Gurnee
    AI4CE
ArXivPDFHTML

Papers citing "Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization"

16 / 16 papers shown
Title
No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
Krzysztof Kacprzyk
M. Schaar
111
0
0
30 Jan 2025
Correlating Time Series with Interpretable Convolutional Kernels
Correlating Time Series with Interpretable Convolutional Kernels
Xinyu Chen
HanQin Cai
Fuqiang Liu
Jinhua Zhao
AI4TS
11
2
0
02 Sep 2024
Learning Governing Equations of Unobserved States in Dynamical Systems
Learning Governing Equations of Unobserved States in Dynamical Systems
Gevik Grigorian
Sandip V. George
S. Arridge
OOD
24
0
0
29 Apr 2024
BackboneLearn: A Library for Scaling Mixed-Integer Optimization-Based
  Machine Learning
BackboneLearn: A Library for Scaling Mixed-Integer Optimization-Based Machine Learning
V. Digalakis
Christos Ziakas
24
0
0
22 Nov 2023
Improved identification accuracy in equation learning via comprehensive
  $\boldsymbol{R^2}$-elimination and Bayesian model selection
Improved identification accuracy in equation learning via comprehensive R2\boldsymbol{R^2}R2-elimination and Bayesian model selection
Daniel Nickelsen
B. Bah
22
0
0
22 Nov 2023
Weak-Form Latent Space Dynamics Identification
Weak-Form Latent Space Dynamics Identification
April Tran
Xiaolong He
Daniel Messenger
Youngsoo Choi
David M. Bortz
39
7
0
20 Nov 2023
A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements
A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements
Mason Ma
Jiajie Wu
Chase Post
Tony Shi
Jingang Yi
Tony Schmitz
Hong Wang
AI4CE
17
1
0
12 Nov 2023
Coarse-Graining Hamiltonian Systems Using WSINDy
Coarse-Graining Hamiltonian Systems Using WSINDy
Daniel Messenger
J. Burby
David M. Bortz
46
6
0
09 Oct 2023
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE
  Discovery
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE Discovery
Pongpisit Thanasutives
Takashi Morita
M. Numao
Ken-ichi Fukui
25
2
0
20 Aug 2023
Evolving Scientific Discovery by Unifying Data and Background Knowledge
  with AI Hilbert
Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert
Ryan Cory-Wright
Cristina Cornelio
S. Dash
Bachir El Khadir
L. Horesh
18
9
0
18 Aug 2023
OKRidge: Scalable Optimal k-Sparse Ridge Regression
OKRidge: Scalable Optimal k-Sparse Ridge Regression
Jiachang Liu
Sam Rosen
Chudi Zhong
Cynthia Rudin
22
4
0
13 Apr 2023
Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form
  Estimation of Nonlinear Dynamics
Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form Estimation of Nonlinear Dynamics
David M. Bortz
Daniel Messenger
Vanja M. Dukic
27
17
0
26 Feb 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
37
20
0
04 Feb 2023
Asymptotic consistency of the WSINDy algorithm in the limit of continuum
  data
Asymptotic consistency of the WSINDy algorithm in the limit of continuum data
Daniel Messenger
David M. Bortz
40
13
0
29 Nov 2022
A toolkit for data-driven discovery of governing equations in high-noise
  regimes
A toolkit for data-driven discovery of governing equations in high-noise regimes
Charles B. Delahunt
J. Nathan Kutz
38
18
0
08 Nov 2021
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1