ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00426
  4. Cited By
Semantic Probabilistic Layers for Neuro-Symbolic Learning

Semantic Probabilistic Layers for Neuro-Symbolic Learning

Neural Information Processing Systems (NeurIPS), 2022
1 June 2022
Kareem Ahmed
Stefano Teso
Kai-Wei Chang
Karen Ullrich
Antonio Vergari
    TPM
ArXiv (abs)PDFHTML

Papers citing "Semantic Probabilistic Layers for Neuro-Symbolic Learning"

36 / 36 papers shown
Understanding and Improving Adversarial Robustness of Neural Probabilistic Circuits
Understanding and Improving Adversarial Robustness of Neural Probabilistic Circuits
Weixin Chen
Han Zhao
AAML
125
0
0
24 Sep 2025
The Need for Verification in AI-Driven Scientific Discovery
The Need for Verification in AI-Driven Scientific Discovery
Cristina Cornelio
Takuya Ito
Ryan Cory-Wright
S. Dash
L. Horesh
166
2
0
01 Sep 2025
Constraints-Guided Diffusion Reasoner for Neuro-Symbolic Learning
Constraints-Guided Diffusion Reasoner for Neuro-Symbolic Learning
Xuan Zhang
Zhijian Zhou
Weidi Xu
Yanting Miao
Chao Qu
Yuan Qi
NAI
172
0
0
22 Aug 2025
Probabilistic Circuits for Knowledge Graph Completion with Reduced Rule Sets
Probabilistic Circuits for Knowledge Graph Completion with Reduced Rule Sets
Jaikrishna Manojkumar Patil
Nathaniel Lee
Al Mehdi Saadat Chowdhury
YooJung Choi
Paulo Shakarian
78
0
0
08 Aug 2025
Tractable Representation Learning with Probabilistic Circuits
Tractable Representation Learning with Probabilistic Circuits
Steven Braun
Sahil Sidheekh
Antonio Vergari
Martin Mundt
S. Natarajan
Kristian Kersting
TPM
368
0
0
06 Jul 2025
Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Dyuman Aditya
Colton Payne
Mario Leiva
Paulo Shakarian
LRMAI4CE
208
1
0
21 Jun 2025
Scaling Probabilistic Circuits via Monarch Matrices
Scaling Probabilistic Circuits via Monarch Matrices
Honghua Zhang
Meihua Dang
Benjie Wang
Stefano Ermon
Nanyun Peng
Karen Ullrich
TPMMoE
278
6
0
14 Jun 2025
ABS: Enforcing Constraint Satisfaction On Generated Sequences Via Automata-Guided Beam Search
ABS: Enforcing Constraint Satisfaction On Generated Sequences Via Automata-Guided Beam Search
Vincenzo Collura
Karim Tit
Laura Bussi
Eleonora Giunchiglia
Maxime Cordy
241
1
0
11 Jun 2025
Neuro-Symbolic Query Compiler
Neuro-Symbolic Query CompilerAnnual Meeting of the Association for Computational Linguistics (ACL), 2025
Yuyao Zhang
Zhicheng Dou
Xiaoxi Li
Jiajie Jin
Yongkang Wu
Zhonghua Li
Qi Ye
Ji-Rong Wen
NAI
328
1
0
17 May 2025
Semantic Probabilistic Control of Language Models
Semantic Probabilistic Control of Language Models
Kareem Ahmed
Catarina G Belém
Padhraic Smyth
Sameer Singh
305
4
0
04 May 2025
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint SatisfactionConference on Uncertainty in Artificial Intelligence (UAI), 2025
Leander Kurscheidt
Paolo Morettin
Roberto Sebastiani
Baptiste Caramiaux
Antonio Vergari
492
4
0
25 Mar 2025
Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraints
Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraintsInternational Conference on Learning Representations (ICLR), 2025
Mihaela C. Stoian
Eleonora Giunchiglia
309
9
0
25 Feb 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Baptiste Caramiaux
Stefano Teso
406
8
0
16 Feb 2025
Neuro-Symbolic AI in 2024: A Systematic Review
Neuro-Symbolic AI in 2024: A Systematic Review
Brandon C. Colelough
William Regli
NAI
663
36
0
09 Jan 2025
Understanding the Logic of Direct Preference Alignment through Logic
Understanding the Logic of Direct Preference Alignment through Logic
Kyle Richardson
Vivek Srikumar
Ashish Sabharwal
517
4
0
23 Dec 2024
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
Lorenzo Loconte
Antonio Mari
G. Gala
Robert Peharz
Cassio de Campos
Erik Quaeghebeur
G. Vessio
Antonio Vergari
477
20
0
12 Sep 2024
Sum of Squares Circuits
Sum of Squares CircuitsAAAI Conference on Artificial Intelligence (AAAI), 2024
Lorenzo Loconte
Stefan Mengel
Antonio Vergari
TPM
553
13
0
21 Aug 2024
On the Relationship Between Monotone and Squared Probabilistic Circuits
On the Relationship Between Monotone and Squared Probabilistic CircuitsAAAI Conference on Artificial Intelligence (AAAI), 2024
Benjie Wang
Karen Ullrich
TPM
416
13
0
01 Aug 2024
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Joshua Shay Kricheli
Khoa Vo
Aniruddha Datta
Spencer Ozgur
Paulo Shakarian
363
7
0
21 Jul 2024
Scaling Tractable Probabilistic Circuits: A Systems Perspective
Scaling Tractable Probabilistic Circuits: A Systems PerspectiveInternational Conference on Machine Learning (ICML), 2024
Hoang Trung-Dung
Kareem Ahmed
Karen Ullrich
TPMBDL
362
16
0
02 Jun 2024
Streamflow Prediction with Uncertainty Quantification for Water
  Management: A Constrained Reasoning and Learning Approach
Streamflow Prediction with Uncertainty Quantification for Water Management: A Constrained Reasoning and Learning Approach
Mohammed Amine Gharsallaoui
Bhupinderjeet Singh
Supriya Savalkar
Aryan Deshwal
Yan Yan
Ananth Kalyanaraman
Kirti Rajagopalan
J. Doppa
AI4CE
193
2
0
31 May 2024
stl2vec: Semantic and Interpretable Vector Representation of Temporal
  Logic
stl2vec: Semantic and Interpretable Vector Representation of Temporal LogicEuropean Conference on Artificial Intelligence (ECAI), 2024
Gaia Saveri
L. Nenzi
Luca Bortolussi
Jan Křetínský
172
3
0
23 May 2024
Learning with Logical Constraints but without Shortcut Satisfaction
Learning with Logical Constraints but without Shortcut Satisfaction
Zenan Li
Zehua Liu
Yuan Yao
Jingwei Xu
Taolue Chen
Xiaoxing Ma
Jian Lu
NAI
312
25
0
01 Mar 2024
PiShield: A PyTorch Package for Learning with Requirements
PiShield: A PyTorch Package for Learning with Requirements
Mihaela C. Stoian
Alex Tatomir
Thomas Lukasiewicz
Eleonora Giunchiglia
254
1
0
28 Feb 2024
A Pseudo-Semantic Loss for Autoregressive Models with Logical
  Constraints
A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints
Kareem Ahmed
Kai-Wei Chang
Karen Ullrich
376
18
0
06 Dec 2023
A Unified Approach to Count-Based Weakly-Supervised Learning
A Unified Approach to Count-Based Weakly-Supervised LearningNeural Information Processing Systems (NeurIPS), 2023
Vinay Shukla
Zhe Zeng
Kareem Ahmed
Karen Ullrich
SSL
277
8
0
22 Nov 2023
Subtractive Mixture Models via Squaring: Representation and Learning
Subtractive Mixture Models via Squaring: Representation and LearningInternational Conference on Learning Representations (ICLR), 2023
Lorenzo Loconte
Aleksanteri Sladek
Stefan Mengel
Martin Trapp
Arno Solin
Nicolas Gillis
Antonio Vergari
TPM
414
33
0
01 Oct 2023
LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints
LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic ConstraintsInternational Conference on Learning Representations (ICLR), 2023
Weidi Xu
Jingwei Wang
Lele Xie
Jianshan He
Hongting Zhou
Taifeng Wang
Xiaopei Wan
Jingdong Chen
Chao Qu
Wei Chu
482
4
0
27 Sep 2023
Interpretability is in the Mind of the Beholder: A Causal Framework for
  Human-interpretable Representation Learning
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation LearningEntropy (Entropy), 2023
Emanuele Marconato
Baptiste Caramiaux
Stefano Teso
272
20
0
14 Sep 2023
Collapsed Inference for Bayesian Deep Learning
Collapsed Inference for Bayesian Deep LearningNeural Information Processing Systems (NeurIPS), 2023
Zhe Zeng
Karen Ullrich
FedMLBDLUQCV
349
11
0
16 Jun 2023
Tractable Control for Autoregressive Language Generation
Tractable Control for Autoregressive Language GenerationInternational Conference on Machine Learning (ICML), 2023
Honghua Zhang
Meihua Dang
Nanyun Peng
Karen Ullrich
BDL
416
57
0
15 Apr 2023
Machine Learning with Requirements: a Manifesto
Machine Learning with Requirements: a Manifesto
Eleonora Giunchiglia
F. Imrie
M. Schaar
Thomas Lukasiewicz
AI4TSOffRLVLM
232
11
0
07 Apr 2023
Bayesian Structure Scores for Probabilistic Circuits
Bayesian Structure Scores for Probabilistic CircuitsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Yang Yang
G. Gala
Robert Peharz
TPM
201
8
0
23 Feb 2023
Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and
  Concept Rehearsal
Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept RehearsalInternational Conference on Machine Learning (ICML), 2023
Emanuele Marconato
G. Bontempo
E. Ficarra
Simone Calderara
Baptiste Caramiaux
Stefano Teso
NAILRMCLL
248
29
0
02 Feb 2023
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
  Inference
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic InferenceNeural Information Processing Systems (NeurIPS), 2022
Emile van Krieken
Thiviyan Thanapalasingam
Jakub M. Tomczak
F. V. Harmelen
A. T. Teije
411
50
0
23 Dec 2022
SIMPLE: A Gradient Estimator for $k$-Subset Sampling
SIMPLE: A Gradient Estimator for kkk-Subset SamplingInternational Conference on Learning Representations (ICLR), 2022
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Karen Ullrich
BDL
328
30
0
04 Oct 2022
1