ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01495
  4. Cited By
Constraining Gaussian processes for physics-informed acoustic emission
  mapping

Constraining Gaussian processes for physics-informed acoustic emission mapping

3 June 2022
Matthew R. Jones
T. Rogers
E. Cross
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Constraining Gaussian processes for physics-informed acoustic emission mapping"

6 / 6 papers shown
Title
Statistical Finite Elements via Interacting Particle Langevin Dynamics
Statistical Finite Elements via Interacting Particle Langevin Dynamics
Alex Glyn-Davies
Connor Duffin
Ieva Kazlauskaite
Mark Girolami
O. Deniz Akyildiz
85
0
0
11 Sep 2024
Towards Multilevel Modelling of Train Passing Events on the
  Staffordshire Bridge
Towards Multilevel Modelling of Train Passing Events on the Staffordshire Bridge
L. Bull
Chiho Jeon
Mark Girolami
Andrew Duncan
Jennifer Schooling
Miguel Bravo Haro
47
0
0
26 Mar 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey
  on Structural Mechanics Applications
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
42
12
0
31 Oct 2023
A spectrum of physics-informed Gaussian processes for regression in
  engineering
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
61
9
0
19 Sep 2023
On the hierarchical Bayesian modelling of frequency response functions
On the hierarchical Bayesian modelling of frequency response functions
T. Dardeno
K. Worden
N. Dervilis
Robin S. Mills
L. Bull
75
9
0
12 Jul 2023
On the Integration of Physics-Based Machine Learning with Hierarchical
  Bayesian Modeling Techniques
On the Integration of Physics-Based Machine Learning with Hierarchical Bayesian Modeling Techniques
O. Sedehi
Antonina M. Kosikova
C. Papadimitriou
L. Katafygiotis
56
7
0
01 Mar 2023
1