ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01742
  4. Cited By
Learning Probabilistic Topological Representations Using Discrete Morse
  Theory

Learning Probabilistic Topological Representations Using Discrete Morse Theory

3 June 2022
Xiaoling Hu
Dimitris Samaras
Chao Chen
ArXivPDFHTML

Papers citing "Learning Probabilistic Topological Representations Using Discrete Morse Theory"

18 / 18 papers shown
Title
Topology-Aware CLIP Few-Shot Learning
Topology-Aware CLIP Few-Shot Learning
Dazhi Huang
VLM
21
0
0
03 May 2025
Disconnect to Connect: A Data Augmentation Method for Improving Topology Accuracy in Image Segmentation
Juan Miguel Valverde
Maja Østergaard
Adrian Rodriguez-Palomo
Peter Alling Strange Vibe
Nina Kølln Wittig
Henrik Birkedal
Anders Bjorholm Dahl
29
0
0
07 Mar 2025
TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy
Juan Miguel Valverde
Motoya Koga
Nijihiko Otsuka
Anders Bjorholm Dahl
26
0
0
05 Mar 2025
TopoDiffusionNet: A Topology-aware Diffusion Model
TopoDiffusionNet: A Topology-aware Diffusion Model
Saumya Gupta
Dimitris Samaras
C. L. P. Chen
DiffM
18
4
0
22 Oct 2024
Probabilistic U-Net with Kendall Shape Spaces for Geometry-Aware
  Segmentations of Images
Probabilistic U-Net with Kendall Shape Spaces for Geometry-Aware Segmentations of Images
Jiyoung Park
Günay Doğan
UQCV
13
0
0
17 Oct 2024
Hard Negative Sample Mining for Whole Slide Image Classification
Hard Negative Sample Mining for Whole Slide Image Classification
Wentao Huang
Xiaoling Hu
Shahira Abousamra
Prateek Prasanna
Chao Chen
VLM
31
5
0
03 Oct 2024
Universal Topology Refinement for Medical Image Segmentation with
  Polynomial Feature Synthesis
Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis
Liu Li
Hanchun Wang
Matthew Baugh
Qiang Ma
Weitong Zhang
Cheng Ouyang
Daniel Rueckert
Bernhard Kainz
MedIm
25
0
0
15 Sep 2024
Spatial Diffusion for Cell Layout Generation
Spatial Diffusion for Cell Layout Generation
Chen Li
Xiaoling Hu
Shahira Abousamra
Meilong Xu
Chao Chen
MedIm
24
3
0
04 Sep 2024
Neurovascular Segmentation in sOCT with Deep Learning and Synthetic
  Training Data
Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data
Etienne Chollet
Yael Balbastre
Chiara Mauri
C. Magnain
Bruce Fischl
Hui Wang
23
0
0
01 Jul 2024
Scale-Free Image Keypoints Using Differentiable Persistent Homology
Scale-Free Image Keypoints Using Differentiable Persistent Homology
Giovanni Barbarani
Francesco Vaccarino
Gabriele Trivigno
Marco Guerra
Gabriele Berton
Carlo Masone
26
0
0
03 Jun 2024
Learning Topological Representations for Deep Image Understanding
Learning Topological Representations for Deep Image Understanding
Xiaoling Hu
16
2
0
22 Mar 2024
Semi-supervised Segmentation of Histopathology Images with Noise-Aware
  Topological Consistency
Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency
Meilong Xu
Xiaoling Hu
Saumya Gupta
Shahira Abousamra
Chao Chen
19
6
0
28 Nov 2023
Calibrating Uncertainty for Semi-Supervised Crowd Counting
Calibrating Uncertainty for Semi-Supervised Crowd Counting
Chen Li
Xiaoling Hu
Shahira Abousamra
Chao Chen
15
20
0
19 Aug 2023
Topology-Aware Uncertainty for Image Segmentation
Topology-Aware Uncertainty for Image Segmentation
Saumya Gupta
Yikai Zhang
Xiaoling Hu
Prateek Prasanna
Chao Chen
18
27
0
09 Jun 2023
Enhancing Modality-Agnostic Representations via Meta-Learning for Brain
  Tumor Segmentation
Enhancing Modality-Agnostic Representations via Meta-Learning for Brain Tumor Segmentation
Aishik Konwer
Xiaoling Hu
Joseph Bae
Xuanang Xu
Chaoyu Chen
Prateek Prasanna
8
16
0
08 Feb 2023
Learning Topological Interactions for Multi-Class Medical Image
  Segmentation
Learning Topological Interactions for Multi-Class Medical Image Segmentation
Saumya Gupta
Xiaoling Hu
James H. Kaan
Michael Jin
M. Mpoy
...
Tahsin M. Kurc
Joel H. Saltz
A. Tassiopoulos
Prateek Prasanna
Chao Chen
8
42
0
20 Jul 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1