ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02013
  4. Cited By
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis

Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis

4 June 2022
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
ArXivPDFHTML

Papers citing "Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis"

35 / 35 papers shown
Title
Characterization and Learning of Causal Graphs from Hard Interventions
Characterization and Learning of Causal Graphs from Hard Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
69
0
0
02 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
64
0
0
30 Apr 2025
DGFamba: Learning Flow Factorized State Space for Visual Domain Generalization
DGFamba: Learning Flow Factorized State Space for Visual Domain Generalization
Qi Bi
Jingjun Yi
Hao Zheng
Haolan Zhan
Wei Ji
Yawen Huang
Yuexiang Li
OOD
28
1
0
10 Apr 2025
Causally Aligned Curriculum Learning
Causally Aligned Curriculum Learning
Mingxuan Li
Junzhe Zhang
Elias Bareinboim
CML
56
3
0
21 Mar 2025
Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms
R. Karlsson
Jesse H. Krijthe
CML
47
0
0
10 Feb 2025
SpaceTime: Causal Discovery from Non-Stationary Time Series
SpaceTime: Causal Discovery from Non-Stationary Time Series
Sarah Mameche
Lénaïg Cornanguer
Urmi Ninad
Jilles Vreeken
CML
AI4TS
33
0
0
20 Jan 2025
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts
  on Tabular Data
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
Kai Helli
David Schnurr
Noah Hollmann
Samuel G. Müller
Frank Hutter
OOD
31
4
0
15 Nov 2024
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
CML
15
1
0
26 Sep 2024
DGMamba: Domain Generalization via Generalized State Space Model
DGMamba: Domain Generalization via Generalized State Space Model
Shaocong Long
Qianyu Zhou
Xiangtai Li
Xuequan Lu
Chenhao Ying
Yuan Luo
Lizhuang Ma
Shuicheng Yan
47
9
0
11 Apr 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
25
13
0
13 Mar 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
42
0
0
16 Feb 2024
Learning Unknown Intervention Targets in Structural Causal Models from
  Heterogeneous Data
Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data
Yuqin Yang
Saber Salehkaleybar
Negar Kiyavash
CML
8
1
0
11 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems
  with Independent Component Analysis
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
18
8
0
29 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
8
5
0
05 Nov 2023
Extracting the Multiscale Causal Backbone of Brain Dynamics
Extracting the Multiscale Causal Backbone of Brain Dynamics
Gabriele DÁcunto
Francesco Bonchi
G. D. F. Morales
Giovanni Petri
9
0
0
31 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
Rethinking Domain Generalization: Discriminability and Generalizability
Rethinking Domain Generalization: Discriminability and Generalizability
Shaocong Long
Qianyu Zhou
Chenhao Ying
Lizhuang Ma
Yuan Luo
OOD
AI4CE
13
12
0
28 Sep 2023
Exploiting Causality Signals in Medical Images: A Pilot Study with
  Empirical Results
Exploiting Causality Signals in Medical Images: A Pilot Study with Empirical Results
Gianluca Carloni
Sara Colantonio
16
8
0
19 Sep 2023
Causal Reinforcement Learning: A Survey
Causal Reinforcement Learning: A Survey
Zhi-Hong Deng
Jing Jiang
Guodong Long
Chen Zhang
CML
LRM
34
13
0
04 Jul 2023
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
  Noise Models
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models
Tianyu Chen
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
CML
17
1
0
30 Jun 2023
Leveraging Task Structures for Improved Identifiability in Neural
  Network Representations
Leveraging Task Structures for Improved Identifiability in Neural Network Representations
Wenlin Chen
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
CML
14
1
0
26 Jun 2023
Learning nonparametric latent causal graphs with unknown interventions
Learning nonparametric latent causal graphs with unknown interventions
Yibo Jiang
Bryon Aragam
CML
11
24
0
05 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
8
56
0
01 Jun 2023
Causal Component Analysis
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
16
36
0
26 May 2023
Out-of-Variable Generalization for Discriminative Models
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OOD
CML
9
2
0
16 Apr 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
10
4
0
06 Mar 2023
On the Interventional Kullback-Leibler Divergence
On the Interventional Kullback-Leibler Divergence
J. Wildberger
Siyuan Guo
Arnab Bhattacharyya
Bernhard Schölkopf
OOD
CML
13
6
0
10 Feb 2023
Score-based Causal Representation Learning with Interventions
Score-based Causal Representation Learning with Interventions
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
Abhishek Kumar
A. Tajer
CML
19
38
0
19 Jan 2023
Learning Multiscale Non-stationary Causal Structures
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
30
3
0
31 Aug 2022
Active Bayesian Causal Inference
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
32
26
0
04 Jun 2022
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
Mingzhou Liu
Xiangyu Zheng
Xinwei Sun
Fang Fang
Yizhou Wang
OOD
8
2
0
05 Jul 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
185
125
0
04 Jan 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
Causal Network Learning from Multiple Interventions of Unknown
  Manipulated Targets
Causal Network Learning from Multiple Interventions of Unknown Manipulated Targets
Y. He
Z. Geng
CML
29
13
0
27 Oct 2016
Causal Inference in the Presence of Latent Variables and Selection Bias
Causal Inference in the Presence of Latent Variables and Selection Bias
Peter Spirtes
Christopher Meek
Thomas S. Richardson
CML
133
434
0
20 Feb 2013
1