Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.02013
Cited By
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
4 June 2022
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis"
35 / 35 papers shown
Title
Characterization and Learning of Causal Graphs from Hard Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
69
0
0
02 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
64
0
0
30 Apr 2025
DGFamba: Learning Flow Factorized State Space for Visual Domain Generalization
Qi Bi
Jingjun Yi
Hao Zheng
Haolan Zhan
Wei Ji
Yawen Huang
Yuexiang Li
OOD
28
1
0
10 Apr 2025
Causally Aligned Curriculum Learning
Mingxuan Li
Junzhe Zhang
Elias Bareinboim
CML
56
3
0
21 Mar 2025
Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms
R. Karlsson
Jesse H. Krijthe
CML
47
0
0
10 Feb 2025
SpaceTime: Causal Discovery from Non-Stationary Time Series
Sarah Mameche
Lénaïg Cornanguer
Urmi Ninad
Jilles Vreeken
CML
AI4TS
33
0
0
20 Jan 2025
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
Kai Helli
David Schnurr
Noah Hollmann
Samuel G. Müller
Frank Hutter
OOD
31
4
0
15 Nov 2024
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
CML
15
1
0
26 Sep 2024
DGMamba: Domain Generalization via Generalized State Space Model
Shaocong Long
Qianyu Zhou
Xiangtai Li
Xuequan Lu
Chenhao Ying
Yuan Luo
Lizhuang Ma
Shuicheng Yan
47
9
0
11 Apr 2024
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
25
13
0
13 Mar 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
42
0
0
16 Feb 2024
Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data
Yuqin Yang
Saber Salehkaleybar
Negar Kiyavash
CML
8
1
0
11 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
18
8
0
29 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
8
5
0
05 Nov 2023
Extracting the Multiscale Causal Backbone of Brain Dynamics
Gabriele DÁcunto
Francesco Bonchi
G. D. F. Morales
Giovanni Petri
9
0
0
31 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
Rethinking Domain Generalization: Discriminability and Generalizability
Shaocong Long
Qianyu Zhou
Chenhao Ying
Lizhuang Ma
Yuan Luo
OOD
AI4CE
13
12
0
28 Sep 2023
Exploiting Causality Signals in Medical Images: A Pilot Study with Empirical Results
Gianluca Carloni
Sara Colantonio
16
8
0
19 Sep 2023
Causal Reinforcement Learning: A Survey
Zhi-Hong Deng
Jing Jiang
Guodong Long
Chen Zhang
CML
LRM
34
13
0
04 Jul 2023
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models
Tianyu Chen
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
CML
17
1
0
30 Jun 2023
Leveraging Task Structures for Improved Identifiability in Neural Network Representations
Wenlin Chen
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
CML
14
1
0
26 Jun 2023
Learning nonparametric latent causal graphs with unknown interventions
Yibo Jiang
Bryon Aragam
CML
11
24
0
05 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
8
56
0
01 Jun 2023
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
16
36
0
26 May 2023
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OOD
CML
9
2
0
16 Apr 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
10
4
0
06 Mar 2023
On the Interventional Kullback-Leibler Divergence
J. Wildberger
Siyuan Guo
Arnab Bhattacharyya
Bernhard Schölkopf
OOD
CML
13
6
0
10 Feb 2023
Score-based Causal Representation Learning with Interventions
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
Abhishek Kumar
A. Tajer
CML
19
38
0
19 Jan 2023
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
30
3
0
31 Aug 2022
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
32
26
0
04 Jun 2022
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
Mingzhou Liu
Xiangyu Zheng
Xinwei Sun
Fang Fang
Yizhou Wang
OOD
8
2
0
05 Jul 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
185
125
0
04 Jan 2021
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
Causal Network Learning from Multiple Interventions of Unknown Manipulated Targets
Y. He
Z. Geng
CML
29
13
0
27 Oct 2016
Causal Inference in the Presence of Latent Variables and Selection Bias
Peter Spirtes
Christopher Meek
Thomas S. Richardson
CML
133
434
0
20 Feb 2013
1