Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.02416
Cited By
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
6 June 2022
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Embrace the Gap: VAEs Perform Independent Mechanism Analysis"
18 / 18 papers shown
Title
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
36
0
0
17 Apr 2025
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
59
3
0
19 Mar 2025
Unpicking Data at the Seams: Understanding Disentanglement in VAEs
Carl Allen
CML
CoGe
25
0
0
29 Oct 2024
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
16
0
0
25 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
22
3
0
09 Oct 2024
Bayesian Intrinsic Groupwise Image Registration: Unsupervised Disentanglement of Anatomy and Geometry
Xinzhe Luo
Xin Wang
Linda Shapiro
Chun Yuan
Jianfeng Feng
Xiahai Zhuang
12
0
0
04 Jan 2024
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
23
7
0
17 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
22
36
0
10 Jul 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
21
25
0
05 Jul 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
20
35
0
27 Jun 2023
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
31
28
0
16 Jun 2023
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
26
31
0
23 May 2023
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz
M. Besserve
Bernhard Schölkopf
11
36
0
12 Aug 2022
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
19
28
0
13 Jun 2022
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
4
6
0
26 Sep 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
206
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
1