ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02416
  4. Cited By
Embrace the Gap: VAEs Perform Independent Mechanism Analysis

Embrace the Gap: VAEs Perform Independent Mechanism Analysis

6 June 2022
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
    DRL
ArXivPDFHTML

Papers citing "Embrace the Gap: VAEs Perform Independent Mechanism Analysis"

18 / 18 papers shown
Title
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
36
0
0
17 Apr 2025
Robustness of Nonlinear Representation Learning
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
59
3
0
19 Mar 2025
Unpicking Data at the Seams: Understanding Disentanglement in VAEs
Unpicking Data at the Seams: Understanding Disentanglement in VAEs
Carl Allen
CML
CoGe
25
0
0
29 Oct 2024
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
16
0
0
25 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent
  Decoding
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
22
3
0
09 Oct 2024
Bayesian Intrinsic Groupwise Image Registration: Unsupervised
  Disentanglement of Anatomy and Geometry
Bayesian Intrinsic Groupwise Image Registration: Unsupervised Disentanglement of Anatomy and Geometry
Xinzhe Luo
Xin Wang
Linda Shapiro
Chun Yuan
Jianfeng Feng
Xiahai Zhuang
12
0
0
04 Jan 2024
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
23
7
0
17 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
Compositional Generalization from First Principles
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
22
36
0
10 Jul 2023
Additive Decoders for Latent Variables Identification and
  Cartesian-Product Extrapolation
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
21
25
0
05 Jul 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
20
35
0
27 Jun 2023
BISCUIT: Causal Representation Learning from Binary Interactions
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
31
28
0
16 Jun 2023
Provably Learning Object-Centric Representations
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
26
31
0
23 May 2023
Function Classes for Identifiable Nonlinear Independent Component
  Analysis
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz
M. Besserve
Bernhard Schölkopf
11
36
0
12 Aug 2022
Causal Representation Learning for Instantaneous and Temporal Effects in
  Interactive Systems
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
19
28
0
13 Jun 2022
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
4
6
0
26 Sep 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
206
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
1