ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02972
  4. Cited By
Decomposed Linear Dynamical Systems (dLDS) for learning the latent
  components of neural dynamics

Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics

7 June 2022
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
ArXivPDFHTML

Papers citing "Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics"

5 / 5 papers shown
Title
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
36
3
0
07 Oct 2024
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
36
3
0
19 Jul 2024
Spectral learning of Bernoulli linear dynamical systems models
Spectral learning of Bernoulli linear dynamical systems models
Iris R. Stone
Yotam Sagiv
Il Memming Park
Jonathan W. Pillow
32
1
0
03 Mar 2023
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Recurrent switching linear dynamical systems
Recurrent switching linear dynamical systems
Scott W. Linderman
Andrew C. Miller
Ryan P. Adams
David M. Blei
Liam Paninski
Matthew J. Johnson
36
69
0
26 Oct 2016
1