Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.03314
Cited By
Integrating Random Effects in Deep Neural Networks
7 June 2022
Giora Simchoni
Saharon Rosset
BDL
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integrating Random Effects in Deep Neural Networks"
11 / 11 papers shown
Title
Scalable Computations for Generalized Mixed Effects Models with Crossed Random Effects Using Krylov Subspace Methods
Pascal Kündig
Fabio Sigrist
19
0
0
14 May 2025
Online Federation For Mixtures of Proprietary Agents with Black-Box Encoders
Xuwei Yang
Fatemeh Tavakoli
D. B. Emerson
Anastasis Kratsios
FedML
62
0
0
30 Apr 2025
Integrating Random Effects in Variational Autoencoders for Dimensionality Reduction of Correlated Data
Giora Simchoni
Saharon Rosset
66
0
0
22 Dec 2024
Probabilistic size-and-shape functional mixed models
Fangyi Wang
Karthik Bharath
Oksana Chkrebtii
S. Kurtek
65
0
0
27 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
33
0
0
31 Oct 2024
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
29
0
0
01 Jul 2024
Reducing the dimensionality and granularity in hierarchical categorical variables
Paul Wilsens
Katrien Antonio
G. Claeskens
21
0
0
06 Mar 2024
Subject-specific Deep Neural Networks for Count Data with High-cardinality Categorical Features
Hangbin Lee
I. Ha
Changha Hwang
Youngjo Lee
16
1
0
18 Oct 2023
A Comparison of Machine Learning Methods for Data with High-Cardinality Categorical Variables
Fabio Sigrist
20
5
0
05 Jul 2023
Neural Mixed Effects for Nonlinear Personalized Predictions
T. Wörtwein
Nicholas B. Allen
Lisa B. Sheeber
Randy P. Auerbach
J. Cohn
Louis-Philippe Morency
11
7
0
13 Jun 2023
Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Benjamin Avanzi
G. Taylor
Melantha Wang
Bernard Wong
17
12
0
30 Jan 2023
1