ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04620
  4. Cited By
On the Generalization and Adaption Performance of Causal Models

On the Generalization and Adaption Performance of Causal Models

9 June 2022
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
    CML
    OOD
    BDL
    TTA
ArXivPDFHTML

Papers citing "On the Generalization and Adaption Performance of Causal Models"

10 / 10 papers shown
Title
Disentangled Representations for Causal Cognition
Disentangled Representations for Causal Cognition
Filippo Torresan
Manuel Baltieri
CML
27
1
0
30 Jun 2024
nuScenes Knowledge Graph -- A comprehensive semantic representation of
  traffic scenes for trajectory prediction
nuScenes Knowledge Graph -- A comprehensive semantic representation of traffic scenes for trajectory prediction
Leon Mlodzian
Zhigang Sun
Hendrik Berkemeyer
Sebastian Monka
Zixu Wang
Stefan Dietze
Lavdim Halilaj
J. Luettin
14
5
0
15 Dec 2023
Unbiased Scene Graph Generation via Two-stage Causal Modeling
Unbiased Scene Graph Generation via Two-stage Causal Modeling
Shuzhou Sun
Shuaifeng Zhi
Qing Liao
J. Heikkilä
Li Liu
CML
19
33
0
11 Jul 2023
Bivariate Causal Discovery using Bayesian Model Selection
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
15
3
0
05 Jun 2023
Masked Images Are Counterfactual Samples for Robust Fine-tuning
Masked Images Are Counterfactual Samples for Robust Fine-tuning
Yao Xiao
Ziyi Tang
Pengxu Wei
Cong Liu
Liang Lin
49
16
0
06 Mar 2023
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
12
12
0
01 Feb 2023
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
22
2
0
24 Nov 2022
Learning Latent Structural Causal Models
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
22
7
0
24 Oct 2022
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
32
72
0
06 Dec 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1