Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.05708
Cited By
Narrowing the Gap: Improved Detector Training with Noisy Location Annotations
12 June 2022
Shaoru Wang
Jin Gao
Bing Li
Weiming Hu
ObjD
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Narrowing the Gap: Improved Detector Training with Noisy Location Annotations"
6 / 6 papers shown
Title
ClipGrader: Leveraging Vision-Language Models for Robust Label Quality Assessment in Object Detection
Hong Lu
Yali Bian
Rahul C. Shah
ObjD
VLM
131
0
0
03 Mar 2025
In Defense and Revival of Bayesian Filtering for Thermal Infrared Object Tracking
Peng Gao
Shi-Min Li
Feng Gao
Fei Wang
Ruyue Yuan
Hamido Fujita
88
9
0
27 Feb 2024
The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review
Daniel Schwabe
Katinka Becker
Martin Seyferth
Andreas Klass
Tobias Schäffter
68
24
0
21 Feb 2024
Towards Building Self-Aware Object Detectors via Reliable Uncertainty Quantification and Calibration
Kemal Oksuz
Thomas Joy
P. Dokania
UQCV
82
16
0
03 Jul 2023
Embrace Limited and Imperfect Training Datasets: Opportunities and Challenges in Plant Disease Recognition Using Deep Learning
Mingle Xu
H. Kim
Jucheng Yang
A. Fuentes
Yao Meng
Sook Yoon
Taehyun Kim
D. Park
60
20
0
19 May 2023
Combating noisy labels in object detection datasets
K. Chachula
Jakub Lyskawa
Bartlomiej Olber
Piotr Fratczak
A. Popowicz
Krystian Radlak
NoLa
48
4
0
25 Nov 2022
1