Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.05837
Cited By
NeuralODF: Learning Omnidirectional Distance Fields for 3D Shape Representation
12 June 2022
Trevor Houchens
ChengEn Lu
Shivam Duggal
Rao Fu
Srinath Sridhar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuralODF: Learning Omnidirectional Distance Fields for 3D Shape Representation"
8 / 8 papers shown
Title
Reconstructive Latent-Space Neural Radiance Fields for Efficient 3D Scene Representations
Tristan Aumentado-Armstrong
Ashkan Mirzaei
Marcus A. Brubaker
J. Kelly
Alex Levinshtein
Konstantinos G. Derpanis
Igor Gilitschenski
35
4
0
27 Oct 2023
OmniNeRF: Hybriding Omnidirectional Distance and Radiance fields for Neural Surface Reconstruction
Jiaming Shen
Bo-Yue Song
Zirui Wu
Yi Xu
AI4CE
26
2
0
27 Sep 2022
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions
Tarun Yenamandra
A. Tewari
Nan Yang
Florian Bernard
Christian Theobalt
Daniel Cremers
16
7
0
30 Mar 2022
ShapeFormer: Transformer-based Shape Completion via Sparse Representation
Xingguang Yan
Liqiang Lin
Niloy J. Mitra
Dani Lischinski
Daniel Cohen-Or
Hui Huang
ViT
64
112
0
25 Jan 2022
Curriculum DeepSDF
Yueqi Duan
Haidong Zhu
He-Nan Wang
L. Yi
Ram Nevatia
Leonidas J. Guibas
70
94
0
19 Mar 2020
Convolutional Occupancy Networks
Songyou Peng
Michael Niemeyer
L. Mescheder
Marc Pollefeys
Andreas Geiger
3DV
AI4CE
232
971
0
10 Mar 2020
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1