Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.07311
Cited By
Can pruning improve certified robustness of neural networks?
15 June 2022
Zhangheng Li
Tianlong Chen
Linyi Li
Bo-wen Li
Zhangyang Wang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can pruning improve certified robustness of neural networks?"
10 / 10 papers shown
Title
Layer Pruning with Consensus: A Triple-Win Solution
Leandro Giusti Mugnaini
Carolina Tavares Duarte
Anna Helena Reali Costa
Artur Jordao
78
0
0
21 Nov 2024
Verified Relative Safety Margins for Neural Network Twins
Anahita Baninajjar
Kamran Hosseini
Ahmed Rezine
A. Aminifar
AAML
16
1
0
25 Sep 2024
Efficient DNN-Powered Software with Fair Sparse Models
Xuanqi Gao
Weipeng Jiang
Juan Zhai
Shiqing Ma
Xiaoyu Zhang
Chao Shen
50
0
0
03 Jul 2024
Harnessing Neuron Stability to Improve DNN Verification
Hai V. Duong
Dong Xu
ThanhVu Nguyen
Matthew B. Dwyer
24
4
0
19 Jan 2024
Benchmarking Adversarial Robustness of Compressed Deep Learning Models
Brijesh Vora
Kartik Patwari
Syed Mahbub Hafiz
Zubair Shafiq
Chen-Nee Chuah
AAML
27
2
0
16 Aug 2023
A DPLL(T) Framework for Verifying Deep Neural Networks
Hai V. Duong
Thanh-Dat Nguyen
Matthew B. Dwyer
25
8
0
17 Jul 2023
Fully Automatic Neural Network Reduction for Formal Verification
Tobias Ladner
Matthias Althoff
AAML
34
3
0
03 May 2023
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
32
10
0
17 Oct 2022
Pruning Filters while Training for Efficiently Optimizing Deep Learning Networks
Sourjya Roy
Priyadarshini Panda
G. Srinivasan
A. Raghunathan
3DPC
VLM
29
19
0
05 Mar 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
1