ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07659
  4. Cited By
Model-based RL with Optimistic Posterior Sampling: Structural Conditions
  and Sample Complexity

Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity

15 June 2022
Alekh Agarwal
Tong Zhang
ArXivPDFHTML

Papers citing "Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity"

19 / 19 papers shown
Title
Satisficing Exploration for Deep Reinforcement Learning
Satisficing Exploration for Deep Reinforcement Learning
Dilip Arumugam
Saurabh Kumar
Ramki Gummadi
Benjamin Van Roy
30
0
0
16 Jul 2024
More Efficient Randomized Exploration for Reinforcement Learning via
  Approximate Sampling
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Haque Ishfaq
Yixin Tan
Yu Yang
Qingfeng Lan
Jianfeng Lu
A. Rupam Mahmood
Doina Precup
Pan Xu
26
4
0
18 Jun 2024
Feel-Good Thompson Sampling for Contextual Dueling Bandits
Feel-Good Thompson Sampling for Contextual Dueling Bandits
Xuheng Li
Heyang Zhao
Quanquan Gu
31
8
0
09 Apr 2024
Regret Minimization via Saddle Point Optimization
Regret Minimization via Saddle Point Optimization
Johannes Kirschner
Seyed Alireza Bakhtiari
Kushagra Chandak
Volodymyr Tkachuk
Csaba Szepesvári
20
1
0
15 Mar 2024
Optimistic Information Directed Sampling
Optimistic Information Directed Sampling
Gergely Neu
Matteo Papini
Ludovic Schwartz
37
2
0
23 Feb 2024
Towards Robust Model-Based Reinforcement Learning Against Adversarial
  Corruption
Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption
Chen Ye
Jiafan He
Quanquan Gu
Tong Zhang
18
5
0
14 Feb 2024
Optimistic Thompson Sampling for No-Regret Learning in Unknown Games
Optimistic Thompson Sampling for No-Regret Learning in Unknown Games
Yingru Li
Liangqi Liu
Wenqiang Pu
Hao Liang
Zhi-Quan Luo
19
2
0
07 Feb 2024
Provable Benefits of Multi-task RL under Non-Markovian Decision Making
  Processes
Provable Benefits of Multi-task RL under Non-Markovian Decision Making Processes
Ruiquan Huang
Yuan-Chia Cheng
Jing Yang
Vincent Tan
Yingbin Liang
19
0
0
20 Oct 2023
Sample-Efficient Multi-Agent RL: An Optimization Perspective
Sample-Efficient Multi-Agent RL: An Optimization Perspective
Nuoya Xiong
Zhihan Liu
Zhaoran Wang
Zhuoran Yang
34
1
0
10 Oct 2023
Pessimistic Nonlinear Least-Squares Value Iteration for Offline
  Reinforcement Learning
Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
Qiwei Di
Heyang Zhao
Jiafan He
Quanquan Gu
OffRL
37
5
0
02 Oct 2023
Bayesian Design Principles for Frequentist Sequential Learning
Bayesian Design Principles for Frequentist Sequential Learning
Yunbei Xu
A. Zeevi
16
11
0
01 Oct 2023
Sample-Efficient Learning of POMDPs with Multiple Observations In
  Hindsight
Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight
Jiacheng Guo
Minshuo Chen
Haiquan Wang
Caiming Xiong
Mengdi Wang
Yu Bai
6
5
0
06 Jul 2023
Provably Efficient UCB-type Algorithms For Learning Predictive State
  Representations
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
Ruiquan Huang
Yitao Liang
J. Yang
OffRL
16
5
0
01 Jul 2023
Maximize to Explore: One Objective Function Fusing Estimation, Planning,
  and Exploration
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
OffRL
30
22
0
29 May 2023
Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
Botao Hao
Rahul Jain
Dengwang Tang
Zheng Wen
OffRL
19
2
0
20 Mar 2023
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
13
19
0
31 Jan 2023
Model-Free Reinforcement Learning with the Decision-Estimation
  Coefficient
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
19
9
0
25 Nov 2022
Partially Observable RL with B-Stability: Unified Structural Condition
  and Sharp Sample-Efficient Algorithms
Partially Observable RL with B-Stability: Unified Structural Condition and Sharp Sample-Efficient Algorithms
Fan Chen
Yu Bai
Song Mei
53
22
0
29 Sep 2022
Deep Dynamics Models for Learning Dexterous Manipulation
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
143
407
0
25 Sep 2019
1