Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.07659
Cited By
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
15 June 2022
Alekh Agarwal
Tong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity"
19 / 19 papers shown
Title
Satisficing Exploration for Deep Reinforcement Learning
Dilip Arumugam
Saurabh Kumar
Ramki Gummadi
Benjamin Van Roy
32
0
0
16 Jul 2024
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Haque Ishfaq
Yixin Tan
Yu Yang
Qingfeng Lan
Jianfeng Lu
A. Rupam Mahmood
Doina Precup
Pan Xu
32
4
0
18 Jun 2024
Feel-Good Thompson Sampling for Contextual Dueling Bandits
Xuheng Li
Heyang Zhao
Quanquan Gu
40
8
0
09 Apr 2024
Regret Minimization via Saddle Point Optimization
Johannes Kirschner
Seyed Alireza Bakhtiari
Kushagra Chandak
Volodymyr Tkachuk
Csaba Szepesvári
26
1
0
15 Mar 2024
Optimistic Information Directed Sampling
Gergely Neu
Matteo Papini
Ludovic Schwartz
37
2
0
23 Feb 2024
Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption
Chen Ye
Jiafan He
Quanquan Gu
Tong Zhang
35
5
0
14 Feb 2024
Optimistic Thompson Sampling for No-Regret Learning in Unknown Games
Yingru Li
Liangqi Liu
Wenqiang Pu
Hao Liang
Zhi-Quan Luo
21
2
0
07 Feb 2024
Provable Benefits of Multi-task RL under Non-Markovian Decision Making Processes
Ruiquan Huang
Yuan-Chia Cheng
Jing Yang
Vincent Tan
Yingbin Liang
19
0
0
20 Oct 2023
Sample-Efficient Multi-Agent RL: An Optimization Perspective
Nuoya Xiong
Zhihan Liu
Zhaoran Wang
Zhuoran Yang
36
1
0
10 Oct 2023
Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
Qiwei Di
Heyang Zhao
Jiafan He
Quanquan Gu
OffRL
37
5
0
02 Oct 2023
Bayesian Design Principles for Frequentist Sequential Learning
Yunbei Xu
A. Zeevi
16
11
0
01 Oct 2023
Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight
Jiacheng Guo
Minshuo Chen
Haiquan Wang
Caiming Xiong
Mengdi Wang
Yu Bai
8
5
0
06 Jul 2023
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
Ruiquan Huang
Yitao Liang
J. Yang
OffRL
16
5
0
01 Jul 2023
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
OffRL
32
22
0
29 May 2023
Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
Botao Hao
Rahul Jain
Dengwang Tang
Zheng Wen
OffRL
19
2
0
20 Mar 2023
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
18
19
0
31 Jan 2023
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
22
9
0
25 Nov 2022
Partially Observable RL with B-Stability: Unified Structural Condition and Sharp Sample-Efficient Algorithms
Fan Chen
Yu Bai
Song Mei
53
22
0
29 Sep 2022
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
143
407
0
25 Sep 2019
1