ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07746
  4. Cited By
Condensing Graphs via One-Step Gradient Matching

Condensing Graphs via One-Step Gradient Matching

15 June 2022
Wei Jin
Xianfeng Tang
Haoming Jiang
Zheng Li
Danqing Zhang
Jiliang Tang
Bin Ying
    DD
ArXivPDFHTML

Papers citing "Condensing Graphs via One-Step Gradient Matching"

23 / 23 papers shown
Title
Rethinking Federated Graph Learning: A Data Condensation Perspective
Rethinking Federated Graph Learning: A Data Condensation Perspective
Hao Zhang
Xunkai Li
Y. X. Zhu
Lianglin Hu
FedML
DD
AI4CE
45
0
0
05 May 2025
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Jonathan Kouchly
Ben Finkelshtein
M. Bronstein
Ron Levie
39
0
0
25 Apr 2025
Subgraph Federated Learning for Local Generalization
Sungwon Kim
Yoonho Lee
Yunhak Oh
Namkyeong Lee
Sukwon Yun
Junseok Lee
Sein Kim
Carl Yang
Chanyoung Park
FedML
OOD
60
1
0
06 Mar 2025
Graph Condensation: A Survey
Graph Condensation: A Survey
Xin Gao
Junliang Yu
Wei Jiang
Tong Chen
Wentao Zhang
Hongzhi Yin
DD
83
19
0
28 Jan 2025
Backdoor Graph Condensation
Backdoor Graph Condensation
Jiahao Wu
Ning Lu
Zeiyu Dai
Kun Wang
Wenqi Fan
Shengcai Liu
Qing Li
Ke Tang
AAML
DD
50
5
0
03 Jul 2024
RobGC: Towards Robust Graph Condensation
RobGC: Towards Robust Graph Condensation
Xinyi Gao
Hongzhi Yin
Tong Chen
Guanhua Ye
Wentao Zhang
Bin Cui
AAML
46
3
0
19 Jun 2024
Efficient User Sequence Learning for Online Services via Compressed
  Graph Neural Networks
Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks
Yucheng Wu
Liyue Chen
Yu Cheng
Shuai Chen
Jinyu Xu
Leye Wang
GNN
19
0
0
05 Jun 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
24
6
0
22 May 2024
Navigating Complexity: Toward Lossless Graph Condensation via Expanding
  Window Matching
Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching
Yuchen Zhang
Tianle Zhang
Kai Wang
Ziyao Guo
Yuxuan Liang
Xavier Bresson
Wei Jin
Yang You
20
23
0
07 Feb 2024
Disentangled Condensation for Large-scale Graphs
Disentangled Condensation for Large-scale Graphs
Zhenbang Xiao
Shunyu Liu
Yu Wang
Tongya Zheng
Mingli Song
Mingli Song
Tongya Zheng
DD
69
6
0
18 Jan 2024
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
Hansong Zhang
Shikun Li
Pengju Wang
Dan Zeng
Shiming Ge
DD
11
21
0
26 Dec 2023
Farzi Data: Autoregressive Data Distillation
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
6
3
0
15 Oct 2023
Graph Distillation with Eigenbasis Matching
Graph Distillation with Eigenbasis Matching
Yang Liu
Deyu Bo
Chuan Shi
DD
23
9
0
13 Oct 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
16
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
15
87
0
13 Jan 2023
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
375
155
0
30 May 2022
Dataset Pruning: Reducing Training Data by Examining Generalization
  Influence
Dataset Pruning: Reducing Training Data by Examining Generalization Influence
Shuo Yang
Zeke Xie
Hanyu Peng
Minjing Xu
Mingming Sun
P. Li
DD
132
106
0
19 May 2022
Graph Trend Filtering Networks for Recommendations
Graph Trend Filtering Networks for Recommendations
Wenqi Fan
Xiaorui Liu
Wei Jin
Xiangyu Zhao
Jiliang Tang
Qing Li
60
99
0
12 Aug 2021
Elastic Graph Neural Networks
Elastic Graph Neural Networks
Xiaorui Liu
W. Jin
Yao Ma
Yaxin Li
Hua Liu
Yiqi Wang
Ming Yan
Jiliang Tang
76
106
0
05 Jul 2021
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient
  Deep Model Training
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
75
184
0
27 Feb 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
183
219
0
16 Feb 2021
Few-Shot Graph Learning for Molecular Property Prediction
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng-Long Jiang
Nitesh V. Chawla
AI4CE
102
130
0
16 Feb 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
1