Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.07751
Cited By
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
15 June 2022
Yujia Zheng
Ignavier Ng
Anton van den Hengel
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Identifiability of Nonlinear ICA: Sparsity and Beyond"
42 / 42 papers shown
Title
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Ruichu Cai
Kaitao Zheng
Junxian Huang
Zijian Li
Zhengming Chen
Boyan Xu
Zhifeng Hao
AI4TS
CML
31
0
0
12 May 2025
Nonparametric Factor Analysis and Beyond
Yujia Zheng
Yang Liu
Jiaxiong Yao
Yingyao Hu
Kaipeng Zhang
CML
40
0
0
21 Mar 2025
DeCaFlow: A Deconfounding Causal Generative Model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
39
0
0
19 Mar 2025
Time Series Domain Adaptation via Latent Invariant Causal Mechanism
Ruichu Cai
Junxian Huang
Zhenhui Yang
Zijian Li
Emadeldeen Eldele
Min Wu
Gang Hua
OOD
CML
BDL
AI4TS
54
0
0
23 Feb 2025
Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting
Ruichu Cai
Haiqin Huang
Zhifang Jiang
Zijian Li
Changze Zhou
Yuequn Liu
Yuming Liu
Zhifeng Hao
AI4TS
CML
58
1
0
18 Feb 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Zhen Zhang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Anton van den Hengel
CML
50
0
0
21 Jan 2025
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Parjanya Prashant
Ignavier Ng
Anton van den Hengel
Zhen Zhang
CML
190
0
0
29 Nov 2024
Learning Identifiable Factorized Causal Representations of Cellular Responses
Haiyi Mao
Romain Lopez
Kai Liu
Jan-Christian Huetter
David Richmond
Panayiotis Benos
Lin Qiu
CML
27
3
0
29 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
37
3
0
09 Oct 2024
Causal Temporal Representation Learning with Nonstationary Sparse Transition
Xiangchen Song
Zijian Li
Guangyi Chen
Yujia Zheng
Yewen Fan
Xinshuai Dong
Kun Zhang
CML
36
2
0
05 Sep 2024
On the Identifiability of Sparse ICA without Assuming Non-Gaussianity
Ignavier Ng
Yujia Zheng
Xinshuai Dong
Kun Zhang
CML
37
5
0
19 Aug 2024
Continual Learning of Nonlinear Independent Representations
Boyang Sun
Ignavier Ng
Guangyi Chen
Yifan Shen
Qirong Ho
Kun Zhang
OOD
CML
45
0
0
11 Aug 2024
Identifiability of a statistical model with two latent vectors: Importance of the dimensionality relation and application to graph embedding
Hiroaki Sasaki
CML
33
0
0
30 May 2024
From Orthogonality to Dependency: Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals
Ruichu Cai
Zhifan Jiang
Zijian Li
Weilin Chen
Xuexin Chen
Zhifeng Hao
Yifan Shen
Guan-Hong Chen
Kun Zhang
40
1
0
25 May 2024
On the Identification of Temporally Causal Representation with Instantaneous Dependence
Zijian Li
Yifan Shen
Kaitao Zheng
Ruichu Cai
Xiangchen Song
Biwei Huang
Zhengmao Zhu
Guan-Hong Chen
Kun Zhang
CML
29
5
0
24 May 2024
Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning
Kyle Hsu
Jubayer Ibn Hamid
Kaylee Burns
Chelsea Finn
Jiajun Wu
CML
26
4
0
16 Apr 2024
Towards the Reusability and Compositionality of Causal Representations
Davide Talon
Phillip Lippe
Stuart James
Alessio Del Bue
Sara Magliacane
BDL
CML
41
4
0
14 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
46
13
0
13 Mar 2024
Counterfactual Generation with Identifiability Guarantees
Hanqi Yan
Lingjing Kong
Lin Gui
Yuejie Chi
Eric P. Xing
Yulan He
Anton van den Hengel
CML
OOD
48
7
0
23 Feb 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
49
0
0
16 Feb 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
91
21
0
14 Feb 2024
Causal Representation Learning from Multiple Distributions: A General Setting
Anton van den Hengel
Shaoan Xie
Ignavier Ng
Yujia Zheng
CML
OOD
29
18
0
07 Feb 2024
Step and Smooth Decompositions as Topological Clustering
Luciano Vinas
Arash A. Amini
14
0
0
09 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
42
30
0
07 Nov 2023
Generalizing Nonlinear ICA Beyond Structural Sparsity
Yujia Zheng
Anton van den Hengel
CML
28
16
0
01 Nov 2023
Object-centric architectures enable efficient causal representation learning
Amin Mansouri
Jason S. Hartford
Yan Zhang
Yoshua Bengio
CML
OCL
OOD
29
15
0
29 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
32
17
0
09 Oct 2023
Unsupervised Complex Semi-Binary Matrix Factorization for Activation Sequence Recovery of Quasi-Stationary Sources
Romain Delabeye
M. Ghienne
Olivia Penas
Jean-Luc Dion
11
1
0
03 Oct 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
42
25
0
05 Jul 2023
On the Identifiability of Quantized Factors
Vitória Barin Pacela
Kartik Ahuja
Simon Lacoste-Julien
Pascal Vincent
OOD
CML
23
1
0
28 Jun 2023
Identification of Nonlinear Latent Hierarchical Models
Lingjing Kong
Erdun Gao
Feng Xie
Eric P. Xing
Yuejie Chi
Anton van den Hengel
CML
32
19
0
13 Jun 2023
Learning World Models with Identifiable Factorization
Yu-Ren Liu
Erdun Gao
Zhengmao Zhu
Hong Tian
Biwei Huang
Yang Yu
Anton van den Hengel
CML
OffRL
42
12
0
11 Jun 2023
Understanding Masked Autoencoders via Hierarchical Latent Variable Models
Lingjing Kong
Martin Q. Ma
Guan-Hong Chen
Eric P. Xing
Yuejie Chi
Louis-Philippe Morency
Anton van den Hengel
17
30
0
08 Jun 2023
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
34
58
0
04 Jun 2023
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
26
25
0
28 May 2023
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
33
31
0
23 May 2023
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
26
32
0
26 Nov 2022
Whole Page Unbiased Learning to Rank
Haitao Mao
Lixin Zou
Yujia Zheng
Jiliang Tang
Xiaokai Chu
Jiashu Zhao
Qian Wang
Dawei Yin
CML
10
4
0
19 Oct 2022
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz
M. Besserve
Bernhard Schölkopf
41
36
0
12 Aug 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
Indeterminacy in Generative Models: Characterization and Strong Identifiability
Quanhan Xi
Benjamin Bloem-Reddy
16
22
0
02 Jun 2022
1