ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08005
  4. Cited By
Evaluating Self-Supervised Learning for Molecular Graph Embeddings

Evaluating Self-Supervised Learning for Molecular Graph Embeddings

16 June 2022
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
ArXivPDFHTML

Papers citing "Evaluating Self-Supervised Learning for Molecular Graph Embeddings"

18 / 18 papers shown
Title
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
85
2
0
18 Dec 2024
Range-aware Positional Encoding via High-order Pretraining: Theory and
  Practice
Range-aware Positional Encoding via High-order Pretraining: Theory and Practice
Viet Anh Nguyen
Nhat-Khang Ngô
Truong Son-Hy
AI4CE
19
0
0
27 Sep 2024
Learning Molecular Representation in a Cell
Learning Molecular Representation in a Cell
Gang Liu
Srijit Seal
John Arevalo
Zhenwen Liang
Anne E Carpenter
Meng-Long Jiang
Shantanu Singh
24
2
0
17 Jun 2024
Progress and Opportunities of Foundation Models in Bioinformatics
Progress and Opportunities of Foundation Models in Bioinformatics
Qing Li
Zhihang Hu
Yixuan Wang
Lei Li
Yimin Fan
Irwin King
Le Song
Yu-Hu Li
AI4CE
16
1
0
06 Feb 2024
Improving Self-supervised Molecular Representation Learning using
  Persistent Homology
Improving Self-supervised Molecular Representation Learning using Persistent Homology
Yuankai Luo
Lei Shi
Veronika Thost
SSL
14
8
0
29 Nov 2023
Graph Positional and Structural Encoder
Graph Positional and Structural Encoder
Semih Cantürk
Renming Liu
Olivier Lapointe-Gagné
Vincent Létourneau
Guy Wolf
Dominique Beaini
Ladislav Rampášek
25
13
0
14 Jul 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
26
17
0
15 Jun 2023
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
22
29
0
28 May 2023
Probing Graph Representations
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
Vijay Lingam
Aleksandar Bojchevski
26
10
0
07 Mar 2023
Enhancing Activity Prediction Models in Drug Discovery with the Ability
  to Understand Human Language
Enhancing Activity Prediction Models in Drug Discovery with the Ability to Understand Human Language
Philipp Seidl
Andreu Vall
Sepp Hochreiter
G. Klambauer
55
35
0
06 Mar 2023
Multi-modal Molecule Structure-text Model for Text-based Retrieval and
  Editing
Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing
Shengchao Liu
Weili Nie
Chengpeng Wang
Jiarui Lu
Zhuoran Qiao
Ling Liu
Jian Tang
Chaowei Xiao
Anima Anandkumar
21
148
0
21 Dec 2022
Flaky Performances when Pretraining on Relational Databases
Flaky Performances when Pretraining on Relational Databases
Shengchao Liu
David Vazquez
Jian Tang
Pierre-Andre Noel
11
2
0
09 Nov 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
106
294
0
07 Oct 2021
On Feature Decorrelation in Self-Supervised Learning
On Feature Decorrelation in Self-Supervised Learning
Tianyu Hua
Wenxiao Wang
Zihui Xue
Sucheng Ren
Yue Wang
Hang Zhao
SSL
OOD
107
163
0
02 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Decoupling the Role of Data, Attention, and Losses in Multimodal
  Transformers
Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers
Lisa Anne Hendricks
John F. J. Mellor
R. Schneider
Jean-Baptiste Alayrac
Aida Nematzadeh
75
110
0
31 Jan 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
1