Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.08900
Cited By
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
17 June 2022
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adapting the Linearised Laplace Model Evidence for Modern Deep Learning"
26 / 26 papers shown
Title
Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis
Sanket R. Jantre
Tianle Wang
Gilchan Park
Kriti Chopra
Nicholas Jeon
Xiaoning Qian
Nathan M. Urban
Byung-Jun Yoon
57
0
0
10 Feb 2025
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
39
8
0
05 Jun 2024
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Zeyu Han
Chao Gao
Jinyang Liu
Jeff Zhang
Sai Qian Zhang
139
301
0
21 Mar 2024
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood
Rayen Dhahri
Alexander Immer
Bertrand Charpentier
Stephan Günnemann
Vincent Fortuin
BDL
UQCV
22
4
0
25 Feb 2024
Bayesian Reward Models for LLM Alignment
Adam X. Yang
Maxime Robeyns
Thomas Coste
Zhengyan Shi
Jun Wang
Haitham Bou-Ammar
Laurence Aitchison
32
17
0
20 Feb 2024
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
28
1
0
13 Feb 2024
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
54
18
0
28 Sep 2023
Bayesian Low-rank Adaptation for Large Language Models
Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
AI4CE
BDL
11
44
0
24 Aug 2023
Online Laplace Model Selection Revisited
J. Lin
Javier Antorán
José Miguel Hernández-Lobato
BDL
19
3
0
12 Jul 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
21
13
0
06 Jul 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
14
22
0
20 Jun 2023
Riemannian Laplace approximations for Bayesian neural networks
Federico Bergamin
Pablo Moreno-Muñoz
Søren Hauberg
Georgios Arvanitidis
BDL
17
6
0
12 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
22
11
0
06 Jun 2023
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
19
6
0
26 May 2023
Image Reconstruction via Deep Image Prior Subspaces
Riccardo Barbano
Javier Antorán
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
vZeljko Kereta
18
1
0
20 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
11
10
0
14 Feb 2023
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
21
16
0
13 Feb 2023
Sampling-based inference for large linear models, with application to linearised Laplace
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
21
17
0
10 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
16
4
0
30 Sep 2022
Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior
Riccardo Barbano
Johannes Leuschner
Javier Antorán
Bangti Jin
José Miguel Hernández-Lobato
13
12
0
11 Jul 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
18
5
0
22 Jun 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
22
10
0
28 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
45
55
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
15
44
0
22 Feb 2022
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
220
510
0
11 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
1