ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.09144
  4. Cited By
Beyond Real-world Benchmark Datasets: An Empirical Study of Node
  Classification with GNNs

Beyond Real-world Benchmark Datasets: An Empirical Study of Node Classification with GNNs

18 June 2022
Seiji Maekawa
Koki Noda
Yuya Sasaki
Makoto Onizuka
ArXivPDFHTML

Papers citing "Beyond Real-world Benchmark Datasets: An Empirical Study of Node Classification with GNNs"

8 / 8 papers shown
Title
Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
Srinitish Srinivasan
Omkumar CU
SSL
BDL
39
0
0
02 Feb 2025
GraphWorld: Fake Graphs Bring Real Insights for GNNs
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
174
59
0
28 Feb 2022
Heterogeneous Graph Transformer
Heterogeneous Graph Transformer
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Yizhou Sun
167
1,157
0
03 Mar 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
173
907
0
02 Mar 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Contextual Stochastic Block Models
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
131
0
23 Jul 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
1