Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.10012
Cited By
Limitations of the NTK for Understanding Generalization in Deep Learning
20 June 2022
Nikhil Vyas
Yamini Bansal
Preetum Nakkiran
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Limitations of the NTK for Understanding Generalization in Deep Learning"
11 / 11 papers shown
Title
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
54
12
0
26 Sep 2024
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
73
5
0
26 May 2024
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
60
8
0
08 Sep 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
42
106
0
22 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
32
29
0
27 Mar 2023
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
17
3
0
04 Sep 2022
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
52
34
0
22 Jul 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
139
201
0
07 Feb 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
231
4,460
0
23 Jan 2020
1