Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2206.10044
Cited By
v1
v2 (latest)
Identifiability of deep generative models without auxiliary information
Neural Information Processing Systems (NeurIPS), 2022
20 June 2022
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Identifiability of deep generative models without auxiliary information"
48 / 48 papers shown
Title
Operationalizing Quantized Disentanglement
Vitória Barin Pacela
Kartik Ahuja
Simon Lacoste-Julien
Pascal Vincent
69
0
0
25 Nov 2025
Thought Communication in Multiagent Collaboration
Yujia Zheng
Zhuokai Zhao
Zijian Li
Yaqi Xie
Mingze Gao
Lizhu Zhang
Kun Zhang
AI4CE
125
2
0
23 Oct 2025
Diverse Influence Component Analysis: A Geometric Approach to Nonlinear Mixture Identifiability
Hoang-Son Nguyen
Xiao Fu
CML
231
0
0
19 Oct 2025
Near-Optimal Experiment Design in Linear non-Gaussian Cyclic Models
Ehsan Sharifian
Saber Salehkaleybar
Negar Kiyavash
CML
110
0
0
25 Sep 2025
PMODE: Theoretically Grounded and Modular Mixture Modeling
Robert A. Vandermeulen
MoE
111
0
0
29 Aug 2025
Identifiability of Deep Polynomial Neural Networks
K. Usevich
Clara Dérand
Ricardo Augusto Borsoi
Marianne Clausel
183
3
0
20 Jun 2025
Identifiable Object Representations under Spatial Ambiguities
Avinash Kori
Francesca Toni
Ben Glocker
OCL
170
0
0
09 Jun 2025
Causality-Inspired Robustness for Nonlinear Models via Representation Learning
Marin Šola
Peter Bühlmann
Xinwei Shen
OOD
246
2
0
19 May 2025
Robustness of Nonlinear Representation Learning
International Conference on Machine Learning (ICML), 2025
Simon Buchholz
Bernhard Schölkopf
OOD
783
5
0
19 Mar 2025
Transfer Learning in Latent Contextual Bandits with Covariate Shift Through Causal Transportability
CLEaR (CLEaR), 2025
Mingwei Deng
Ville Kyrki
Dominik Baumann
225
3
0
27 Feb 2025
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Neural Information Processing Systems (NeurIPS), 2024
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
277
3
0
31 Oct 2024
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
LRM
226
5
0
25 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
179
7
0
09 Oct 2024
Controlling for discrete unmeasured confounding in nonlinear causal models
CLEaR (CLEaR), 2024
Patrick Burauel
Frederick Eberhardt
Michel Besserve
CML
126
0
0
10 Aug 2024
Identifiable Object-Centric Representation Learning via Probabilistic Slot Attention
Avinash Kori
Francesco Locatello
Ainkaran Santhirasekaram
Francesca Toni
Ben Glocker
Fabio De Sousa Ribeiro
OCL
217
7
0
11 Jun 2024
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Erdun Gao
Eric P. Xing
Yuejie Chi
Kun Zhang
332
12
0
01 Jun 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
371
18
0
22 May 2024
Distributional Principal Autoencoders
Xinwei Shen
N. Meinshausen
194
4
0
21 Apr 2024
Non-negative Contrastive Learning
Yifei Wang
Tao Gui
Yaoyu Guo
Yisen Wang
279
14
0
19 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation Learning
International Conference on Machine Learning (ICML), 2024
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
215
21
0
13 Mar 2024
On the Origins of Linear Representations in Large Language Models
Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
Victor Veitch
233
48
0
06 Mar 2024
Separating common from salient patterns with Contrastive Representation Learning
Robin Louiset
Edouard Duchesnay
Antoine Grigis
Pietro Gori
SSL
DRL
220
3
0
19 Feb 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
374
28
0
14 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
475
9
0
19 Dec 2023
Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data
Yuqin Yang
Saber Salehkaleybar
Negar Kiyavash
CML
251
3
0
11 Dec 2023
Multi-View Causal Representation Learning with Partial Observability
International Conference on Learning Representations (ICLR), 2023
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
333
52
0
07 Nov 2023
Generalizing Nonlinear ICA Beyond Structural Sparsity
Neural Information Processing Systems (NeurIPS), 2023
Yujia Zheng
Kun Zhang
CML
146
25
0
01 Nov 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
International Conference on Machine Learning (ICML), 2023
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
362
19
0
24 Oct 2023
Identifying Representations for Intervention Extrapolation
International Conference on Learning Representations (ICLR), 2023
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
203
17
0
06 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
313
16
0
04 Oct 2023
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
309
0
0
01 Sep 2023
Beyond Convergence: Identifiability of Machine Learning and Deep Learning Models
Reza Sameni
130
2
0
21 Jul 2023
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori
Pedro Sanchez
Konstantinos Vilouras
Ben Glocker
Sotirios A. Tsaftaris
BDL
SSL
CML
277
2
0
11 Jul 2023
On the Identifiability of Quantized Factors
CLEaR (CLEaR), 2023
Vitória Barin Pacela
Kartik Ahuja
Damien Scieur
Pascal Vincent
OOD
CML
242
3
0
28 Jun 2023
Leveraging Task Structures for Improved Identifiability in Neural Network Representations
Jiajun He
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
CML
248
1
0
26 Jun 2023
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Neural Information Processing Systems (NeurIPS), 2023
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
310
76
0
04 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Neural Information Processing Systems (NeurIPS), 2023
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
443
80
0
01 Jun 2023
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yuan Liu
Bryon Aragam
Liam Solus
CML
155
5
0
31 May 2023
Disentanglement via Latent Quantization
Neural Information Processing Systems (NeurIPS), 2023
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
293
34
0
28 May 2023
Causal Component Analysis
Neural Information Processing Systems (NeurIPS), 2023
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
336
48
0
26 May 2023
On the Identifiability of Switching Dynamical Systems
International Conference on Machine Learning (ICML), 2023
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
314
7
0
25 May 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Journal of machine learning research (JMLR), 2023
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
324
11
0
27 Mar 2023
Causally Disentangled Generative Variational AutoEncoder
European Conference on Artificial Intelligence (ECAI), 2023
SeungHwan An
Kyungwoo Song
Jong-June Jeon
OOD
CoGe
DRL
CML
157
7
0
23 Feb 2023
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
International Conference on Machine Learning (ICML), 2023
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODD
OOD
234
17
0
17 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
366
14
0
29 Jan 2023
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2022
Robert A. Vandermeulen
René Saitenmacher
158
4
0
22 Jul 2022
Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures
Annual Conference Computational Learning Theory (COLT), 2022
Bryon Aragam
W. Tai
363
3
0
28 Mar 2022
Uniform Consistency in Nonparametric Mixture Models
Annals of Statistics (Ann. Stat.), 2021
Bryon Aragam
Ruiyi Yang
249
6
0
31 Aug 2021
1