ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10911
  4. Cited By
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection

Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection

22 June 2022
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
    MedIm
ArXivPDFHTML

Papers citing "Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection"

7 / 7 papers shown
Title
Improving Uncertainty-Error Correspondence in Deep Bayesian Medical
  Image Segmentation
Improving Uncertainty-Error Correspondence in Deep Bayesian Medical Image Segmentation
P. Mody
Nicolas F. Chaves-de-Plaza
Chinmay Rao
Eleftheria Astrenidou
M. de Ridder
N. Hoekstra
Klaus Hildebrandt
Marius Staring
UQCV
17
0
0
05 Sep 2024
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
24
76
0
05 Oct 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
24
12
0
22 Sep 2021
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,599
0
19 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
160
25,214
0
09 Jun 2011
1