ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00556
  4. Cited By
Learning to correct spectral methods for simulating turbulent flows

Learning to correct spectral methods for simulating turbulent flows

1 July 2022
Gideon Dresdner
Dmitrii Kochkov
Peter C. Norgaard
Leonardo Zepeda-Núnez
Jamie A. Smith
M. Brenner
Stephan Hoyer
    AI4CE
ArXivPDFHTML

Papers citing "Learning to correct spectral methods for simulating turbulent flows"

28 / 28 papers shown
Title
Integral regularization PINNs for evolution equations
Integral regularization PINNs for evolution equations
Xiaodong Feng
Haojiong Shangguan
Tao Tang
Xiaoliang Wan
PINN
68
0
0
31 Mar 2025
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Chris Pedersen
L. Zanna
Joan Bruna
45
1
0
24 Mar 2025
MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation
Qi Wang
Yuan Mi
Haoran Wang
Yi Zhang
Ruizhi Chengze
Hongsheng Liu
J. Wen
Hao Sun
AI4CE
43
0
0
28 Jan 2025
P$^2$C$^2$Net: PDE-Preserved Coarse Correction Network for efficient
  prediction of spatiotemporal dynamics
P2^22C2^22Net: PDE-Preserved Coarse Correction Network for efficient prediction of spatiotemporal dynamics
Qi Wang
Pu Ren
Hao Zhou
Xin-Yang Liu
Z. Deng
...
Zidong Wang
Jian-Xun Wang
Ji-Rong_Wen
Hao Sun
Yang Liu
58
5
0
29 Oct 2024
Active Learning for Neural PDE Solvers
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
54
4
0
02 Aug 2024
Weak baselines and reporting biases lead to overoptimism in machine
  learning for fluid-related partial differential equations
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
43
0
09 Jul 2024
PAPM: A Physics-aware Proxy Model for Process Systems
PAPM: A Physics-aware Proxy Model for Process Systems
Pengwei Liu
Zhongkai Hao
Xingyu Ren
Hangjie Yuan
Jiayang Ren
Dong Ni
AI4CE
PINN
45
0
0
07 Jul 2024
Solving partial differential equations with sampled neural networks
Solving partial differential equations with sampled neural networks
Chinmay Datar
Taniya Kapoor
Abhishek Chandra
Qing Sun
Iryna Burak
Erik Lien Bolager
Anna Veselovska
Massimo Fornasier
Felix Dietrich
35
1
0
31 May 2024
Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows
Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows
Shuhao Cao
Francesco Brarda
Ruipeng Li
Yuanzhe Xi
44
1
0
27 May 2024
SineNet: Learning Temporal Dynamics in Time-Dependent Partial
  Differential Equations
SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations
Xuan Zhang
Jacob Helwig
Yu-Ching Lin
Yaochen Xie
Cong Fu
Stephan Wojtowytsch
Shuiwang Ji
AI4CE
37
6
0
28 Mar 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer
  Processes
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
33
16
0
20 Mar 2024
Generative Learning for Forecasting the Dynamics of Complex Systems
Generative Learning for Forecasting the Dynamics of Complex Systems
Han Gao
Sebastian Kaltenbach
Petros Koumoutsakos
AI4TS
AI4CE
32
6
0
27 Feb 2024
Rolling Diffusion Models
Rolling Diffusion Models
David Ruhe
Jonathan Heek
Tim Salimans
Emiel Hoogeboom
DiffM
35
33
0
12 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
  Systems
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núnez
36
12
0
06 Feb 2024
Neural Spectral Methods: Self-supervised learning in the spectral domain
Neural Spectral Methods: Self-supervised learning in the spectral domain
Yiheng Du
N. Chalapathi
Aditi Krishnapriyan
22
6
0
08 Dec 2023
Deep Equilibrium Based Neural Operators for Steady-State PDEs
Deep Equilibrium Based Neural Operators for Steady-State PDEs
Tanya Marwah
Ashwini Pokle
J. Zico Kolter
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
25
8
0
30 Nov 2023
Gradient-free online learning of subgrid-scale dynamics with neural
  emulators
Gradient-free online learning of subgrid-scale dynamics with neural emulators
Hugo Frezat
Ronan Fablet
G. Balarac
Julien Le Sommer
21
4
0
30 Oct 2023
TSONN: Time-stepping-oriented neural network for solving partial
  differential equations
TSONN: Time-stepping-oriented neural network for solving partial differential equations
W. Cao
Weiwei Zhang
AI4TS
18
1
0
25 Oct 2023
Multiple Physics Pretraining for Physical Surrogate Models
Multiple Physics Pretraining for Physical Surrogate Models
Michael McCabe
Bruno Régaldo-Saint Blancard
Liam Parker
Ruben Ohana
M. Cranmer
...
Francois Lanusse
Mariel Pettee
Tiberiu Teşileanu
Kyunghyun Cho
Shirley Ho
PINN
AI4CE
34
52
0
04 Oct 2023
Towards Long-Term predictions of Turbulence using Neural Operators
Towards Long-Term predictions of Turbulence using Neural Operators
Fernando González
Franccois-Xavier Demoulin
Simon Bernard
AI4CE
22
0
0
25 Jul 2023
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural
  Stochastic Differential Equations
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
Anudhyan Boral
Z. Y. Wan
Leonardo Zepeda-Núnez
James Lottes
Qing Wang
Yi-fan Chen
John R. Anderson
Fei Sha
AI4CE
PINN
27
11
0
01 Jun 2023
Debias Coarsely, Sample Conditionally: Statistical Downscaling through
  Optimal Transport and Probabilistic Diffusion Models
Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models
Z. Y. Wan
Ricardo Baptista
Yi-fan Chen
John R. Anderson
Anudhyan Boral
Fei Sha
Leonardo Zepeda-Núnez
DiffM
41
24
0
24 May 2023
Invariant preservation in machine learned PDE solvers via error
  correction
Invariant preservation in machine learned PDE solvers via error correction
N. McGreivy
Ammar Hakim
AI4CE
PINN
29
8
0
28 Mar 2023
A Neural PDE Solver with Temporal Stencil Modeling
A Neural PDE Solver with Temporal Stencil Modeling
Zhiqing Sun
Yiming Yang
Shinjae Yoo
DiffM
AI4CE
24
14
0
16 Feb 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher
  order deep operator learning for parametric partial differential equations
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
29
1
0
07 Feb 2023
Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
  Advection-Dominated Systems
Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems
Z. Y. Wan
Leonardo Zepeda-Núnez
Anudhyan Boral
Fei Sha
BDL
AI4CE
11
13
0
25 Jan 2023
On Fast Simulation of Dynamical System with Neural Vector Enhanced
  Numerical Solver
On Fast Simulation of Dynamical System with Neural Vector Enhanced Numerical Solver
Zhongzhan Huang
Senwei Liang
Hong Zhang
Haizhao Yang
Liang Lin
AI4CE
38
8
0
07 Aug 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
220
2,287
0
18 Oct 2020
1