Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.01780
Cited By
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
5 July 2022
Hung Le
Yue Wang
Akhilesh Deepak Gotmare
Silvio Savarese
S. Hoi
SyDa
ALM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning"
5 / 5 papers shown
Title
Problem Solving Through Human-AI Preference-Based Cooperation
Subhabrata Dutta
Timo Kaufmann
Goran Glavas
Ivan Habernal
Kristian Kersting
Frauke Kreuter
Mira Mezini
Iryna Gurevych
Eyke Hüllermeier
Hinrich Schuetze
54
1
0
14 Aug 2024
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
292
8,441
0
04 Mar 2022
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq R. Joty
S. Hoi
188
1,144
0
02 Sep 2021
Measuring Coding Challenge Competence With APPS
Dan Hendrycks
Steven Basart
Saurav Kadavath
Mantas Mazeika
Akul Arora
...
Collin Burns
Samir Puranik
Horace He
D. Song
Jacob Steinhardt
ELM
AIMat
ALM
171
429
0
20 May 2021
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
Shuai Lu
Daya Guo
Shuo Ren
Junjie Huang
Alexey Svyatkovskiy
...
Nan Duan
Neel Sundaresan
Shao Kun Deng
Shengyu Fu
Shujie Liu
ELM
180
853
0
09 Feb 2021
1