ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.02201
  4. Cited By
Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
  Object Segmentation

Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation

5 July 2022
Jiadai Sun
Yuchao Dai
Xianjing Zhang
Jintao Xu
Rui Ai
Weihao Gu
Xieyuanli Chen
    3DPC
ArXivPDFHTML

Papers citing "Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation"

4 / 4 papers shown
Title
HiMo: High-Speed Objects Motion Compensation in Point Clouds
HiMo: High-Speed Objects Motion Compensation in Point Clouds
Qingwen Zhang
Ajinkya Khoche
Yi Yang
Li Ling
Sina Sharif Mansouri
Olov Andersson
Patric Jensfelt
3DPC
44
0
0
02 Mar 2025
RadarMOSEVE: A Spatial-Temporal Transformer Network for Radar-Only
  Moving Object Segmentation and Ego-Velocity Estimation
RadarMOSEVE: A Spatial-Temporal Transformer Network for Radar-Only Moving Object Segmentation and Ego-Velocity Estimation
Changsong Pang
Xieyuanli Chen
Yimin Liu
Huimin Lu
Yuwei Cheng
24
1
0
22 Feb 2024
Building Volumetric Beliefs for Dynamic Environments Exploiting
  Map-Based Moving Object Segmentation
Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation
Benedikt Mersch
Tiziano Guadagnino
Xieyuanli Chen
Ignacio Vizzo
Jens Behley
C. Stachniss
3DPC
20
31
0
17 Jul 2023
BirdNet: a 3D Object Detection Framework from LiDAR information
BirdNet: a 3D Object Detection Framework from LiDAR information
Jorge Beltrán
Carlos Guindel
Francisco Miguel Moreno
Daniel Cruzado
F. García
A. D. L. Escalera
3DPC
129
250
0
03 May 2018
1