Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.04179
Cited By
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
9 July 2022
Tung Nguyen
Aditya Grover
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling"
50 / 71 papers shown
Title
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes
Jie Liu
Pan Zhou
Zehao Xiao
Jiayi Shen
Wenzhe Yin
J. Sonke
E. Gavves
25
0
0
03 May 2025
Exploring Pseudo-Token Approaches in Transformer Neural Processes
Jose Lara-Rangel
Nanze Chen
Fengzhe Zhang
22
0
0
19 Apr 2025
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
54
0
0
02 Apr 2025
Architectural and Inferential Inductive Biases For Exchangeable Sequence Modeling
Daksh Mittal
Ang Li
Tzu-Ching Yen
Daniel Guetta
Hongseok Namkoong
45
0
0
03 Mar 2025
PABBO: Preferential Amortized Black-Box Optimization
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
34
0
0
02 Mar 2025
Dimension Agnostic Neural Processes
Hyungi Lee
Chaeyun Jang
Dongbok Lee
Juho Lee
UQCV
AI4CE
44
0
0
28 Feb 2025
Vector-ICL: In-context Learning with Continuous Vector Representations
Yufan Zhuang
Chandan Singh
Liyuan Liu
Jingbo Shang
Jianfeng Gao
52
3
0
21 Feb 2025
Geometric Neural Process Fields
Wenzhe Yin
Zehao Xiao
Jiayi Shen
Yunlu Chen
Cees G. M. Snoek
J. Sonke
E. Gavves
AI4CE
38
0
0
04 Feb 2025
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
44
1
0
03 Jan 2025
Robust Neural Processes for Noisy Data
Chen Shapira
Dan Rosenbaum
24
1
0
03 Nov 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
41
4
0
20 Oct 2024
Predicting from Strings: Language Model Embeddings for Bayesian Optimization
Tung Nguyen
Qiuyi Zhang
Bangding Yang
Chansoo Lee
J. Bornschein
Yingjie Miao
Sagi Perel
Yutian Chen
Xingyou Song
BDL
18
3
0
14 Oct 2024
Metalic: Meta-Learning In-Context with Protein Language Models
Jacob Beck
Shikha Surana
Manus McAuliffe
Oliver Bent
Thomas D. Barrett
Juan Jose Garau Luis
Paul Duckworth
AI4CE
28
0
0
10 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
36
1
0
09 Oct 2024
GAMformer: In-Context Learning for Generalized Additive Models
Andreas Mueller
Julien N. Siems
Harsha Nori
David Salinas
Arber Zela
Rich Caruana
Frank Hutter
AI4CE
31
3
0
06 Oct 2024
Towards certifiable AI in aviation: landscape, challenges, and opportunities
Hymalai Bello
Daniel Geißler
L. Ray
Stefan Muller-Divéky
Peter Muller
Shannon Kittrell
Mengxi Liu
Bo Zhou
Paul Lukowicz
21
1
0
13 Sep 2024
An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
Taeyoung Yun
Kanghoon Lee
Sujin Yun
Ilmyung Kim
Won-Woo Jung
Min-Cheol Kwon
Kyujin Choi
Yoohyeon Lee
Jinkyoo Park
14
0
0
14 Aug 2024
LICO: Large Language Models for In-Context Molecular Optimization
Tung Nguyen
Aditya Grover
28
6
0
27 Jun 2024
In-Context In-Context Learning with Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
Richard E. Turner
18
3
0
19 Jun 2024
Approximately Equivariant Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
W. Bruinsma
Richard E. Turner
BDL
32
1
0
19 Jun 2024
Translation Equivariant Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Junhyuck Kim
Lakee Sivaraya
Stratis Markou
James Requeima
W. Bruinsma
Richard E. Turner
33
4
0
18 Jun 2024
Probing the Decision Boundaries of In-context Learning in Large Language Models
Siyan Zhao
Tung Nguyen
Aditya Grover
32
6
0
17 Jun 2024
Estimating the Hallucination Rate of Generative AI
Andrew Jesson
Nicolas Beltran-Velez
Quentin Chu
Sweta Karlekar
Jannik Kossen
Yarin Gal
John P. Cunningham
David M. Blei
38
6
0
11 Jun 2024
System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization
Jixiang Qing
Becky D Langdon
Robert M. Lee
B. Shafei
Mark van der Wilk
Calvin Tsay
Ruth Misener
32
1
0
04 Jun 2024
Rough Transformers: Lightweight and Continuous Time Series Modelling through Signature Patching
Fernando Moreno-Pino
Alvaro Arroyo
H. Waldon
Xiaowen Dong
Álvaro Cartea
AI4TS
27
1
0
31 May 2024
Data-Driven Simulator for Mechanical Circulatory Support with Domain Adversarial Neural Process
S. Sun
Wenyuan Chen
Zihao Zhou
Sonia Fereidooni
Elise Jortberg
Rose Yu
AI4CE
29
0
0
28 May 2024
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation
Dong Bok Lee
Aoxuan Silvia Zhang
Byung-Hoon Kim
Junhyeon Park
Juho Lee
Sung Ju Hwang
Haebeom Lee
27
1
0
28 May 2024
Rényi Neural Processes
Xuesong Wang
He Zhao
Edwin V. Bonilla
UQCV
BDL
25
0
0
25 May 2024
Position: Leverage Foundational Models for Black-Box Optimization
Xingyou Song
Yingtao Tian
Robert Tjarko Lange
Chansoo Lee
Yujin Tang
Yutian Chen
38
5
0
06 May 2024
Spectral Convolutional Conditional Neural Processes
Peiman Mohseni
Nick Duffield
19
3
0
19 Apr 2024
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian Weilbach
Frank D. Wood
Jakob H. Macke
19
25
0
15 Apr 2024
Real-time Adaptation for Condition Monitoring Signal Prediction using Label-aware Neural Processes
Seokhyun Chung
Raed Al Kontar
26
0
0
25 Mar 2024
Rough Transformers for Continuous and Efficient Time-Series Modelling
Fernando Moreno-Pino
Alvaro Arroyo
H. Waldon
Xiaowen Dong
Álvaro Cartea
AI4TS
MedIm
23
5
0
15 Mar 2024
Reinforced In-Context Black-Box Optimization
Lei Song
Chenxiao Gao
Ke Xue
Chenyang Wu
Dong Li
Jianye Hao
Zongzhang Zhang
Chao Qian
24
3
0
27 Feb 2024
Cumulative Distribution Function based General Temporal Point Processes
Maolin Wang
Yu Pan
Zenglin Xu
Ruocheng Guo
Xiangyu Zhao
Wanyu Wang
Yiqi Wang
Zitao Liu
Langming Liu
AI4TS
9
0
0
01 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
25
1
0
05 Jan 2024
Diffusion Models With Learned Adaptive Noise
S. Sahoo
Aaron Gokaslan
Christopher De Sa
Volodymyr Kuleshov
DiffM
21
8
0
20 Dec 2023
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Tomoharu Iwata
Atsutoshi Kumagai
BDL
UQCV
9
1
0
13 Dec 2023
ExPT: Synthetic Pretraining for Few-Shot Experimental Design
Tung Nguyen
Sudhanshu Agrawal
Aditya Grover
11
14
0
30 Oct 2023
Episodic Multi-Task Learning with Heterogeneous Neural Processes
Jiayi Shen
Xiantong Zhen
Qi
Qi Wang
M. Worring
9
11
0
28 Oct 2023
Group Preference Optimization: Few-Shot Alignment of Large Language Models
Siyan Zhao
John Dang
Aditya Grover
13
28
0
17 Oct 2023
Tree Cross Attention
Zixuan Chen
Zewei He
Ziqian Lu
Zheming Lu
Mohamed Osama Ahmed
34
0
0
29 Sep 2023
Exploiting Inferential Structure in Neural Processes
Dharmesh Tailor
Mohammad Emtiyaz Khan
Eric Nalisnick
BDL
26
1
0
27 Jun 2023
Supervised Pretraining Can Learn In-Context Reinforcement Learning
Jonathan Lee
Annie Xie
Aldo Pacchiano
Yash Chandak
Chelsea Finn
Ofir Nachum
Emma Brunskill
OffRL
19
73
0
26 Jun 2023
Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
12
0
0
21 Jun 2023
Practical Equivariances via Relational Conditional Neural Processes
Daolang Huang
Manuel Haussmann
Ulpu Remes
S. T. John
Grégoire Clarté
K. Luck
Samuel Kaski
Luigi Acerbi
BDL
48
8
0
19 Jun 2023
Diffusion Models for Black-Box Optimization
S. Krishnamoorthy
Satvik Mashkaria
Aditya Grover
DiffM
13
50
0
12 Jun 2023
Decision Stacks: Flexible Reinforcement Learning via Modular Generative Models
Siyan Zhao
Aditya Grover
OffRL
6
7
0
09 Jun 2023
Taylorformer: Probabilistic Predictions for Time Series and other Processes
Omer Nivron
R. Parthipan
Damon J. Wischik
BDL
AI4TS
11
2
0
30 May 2023
Adaptive Conditional Quantile Neural Processes
Peiman Mohseni
N. Duffield
Bani Mallick
Arman Hasanzadeh
14
3
0
30 May 2023
1
2
Next