ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.07177
  4. Cited By
Characterizing and Optimizing End-to-End Systems for Private Inference

Characterizing and Optimizing End-to-End Systems for Private Inference

14 July 2022
Karthik Garimella
Zahra Ghodsi
N. Jha
S. Garg
Brandon Reagen
ArXivPDFHTML

Papers citing "Characterizing and Optimizing End-to-End Systems for Private Inference"

9 / 9 papers shown
Title
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
H. Roh
Jinsu Yeo
Yeongil Ko
Gu-Yeon Wei
David Brooks
Woo-Seok Choi
79
2
0
20 Jan 2025
FastQuery: Communication-efficient Embedding Table Query for Private LLM
  Inference
FastQuery: Communication-efficient Embedding Table Query for Private LLM Inference
Chenqi Lin
Tianshi Xu
Zebin Yang
Runsheng Wang
Ru Huang
Meng Li
31
0
0
25 May 2024
Hyena: Optimizing Homomorphically Encrypted Convolution for Private CNN Inference
Hyena: Optimizing Homomorphically Encrypted Convolution for Private CNN Inference
H. Roh
Woo-Seok Choi
45
1
0
21 Nov 2023
HAAC: A Hardware-Software Co-Design to Accelerate Garbled Circuits
HAAC: A Hardware-Software Co-Design to Accelerate Garbled Circuits
Jianqiao Mo
Jayanth Gopinath
Brandon Reagen
19
22
0
23 Nov 2022
zPROBE: Zero Peek Robustness Checks for Federated Learning
zPROBE: Zero Peek Robustness Checks for Federated Learning
Zahra Ghodsi
Mojan Javaheripi
Nojan Sheybani
Xinqiao Zhang
Ke Huang
F. Koushanfar
FedML
37
17
0
24 Jun 2022
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at
  Scale
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
Karthik Garimella
N. Jha
Zahra Ghodsi
S. Garg
Brandon Reagen
29
3
0
04 Nov 2021
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption
  (Extended Version)
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption (Extended Version)
Axel S. Feldmann
Nikola Samardzic
A. Krastev
S. Devadas
R. Dreslinski
Karim M. El Defrawy
Nicholas Genise
Chris Peikert
Daniel Sánchez
35
251
0
11 Sep 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
183
0
22 Apr 2021
CrypTFlow: Secure TensorFlow Inference
CrypTFlow: Secure TensorFlow Inference
Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
96
235
0
16 Sep 2019
1