ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08229
  4. Cited By
Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step
  Inverse Models

Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models

17 July 2022
Alex Lamb
Riashat Islam
Yonathan Efroni
Aniket Didolkar
Dipendra Kumar Misra
Dylan J. Foster
Lekan Molu
Rajan Chari
A. Krishnamurthy
John Langford
ArXivPDFHTML

Papers citing "Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models"

19 / 19 papers shown
Title
Adapting a World Model for Trajectory Following in a 3D Game
Adapting a World Model for Trajectory Following in a 3D Game
Marko Tot
Shu Ishida
Abdelhak Lemkhenter
David Bignell
Pallavi Choudhury
...
Tarun Gupta
Darren Gehring
Sam Devlin
Sergio Valcarcel Macua
Raluca Georgescu
38
0
0
16 Apr 2025
Offline Action-Free Learning of Ex-BMDPs by Comparing Diverse Datasets
Offline Action-Free Learning of Ex-BMDPs by Comparing Diverse Datasets
Alexander Levine
Peter Stone
Amy Zhang
OffRL
42
0
0
26 Mar 2025
Learning Fused State Representations for Control from Multi-View Observations
Learning Fused State Representations for Control from Multi-View Observations
Zeyu Wang
Yao Li
Xin Li
Hongyu Zang
Romain Laroche
Riashat Islam
OffRL
49
0
0
03 Feb 2025
Policy-shaped prediction: avoiding distractions in model-based
  reinforcement learning
Policy-shaped prediction: avoiding distractions in model-based reinforcement learning
Miles Hutson
Isaac Kauvar
Nick Haber
59
0
0
08 Dec 2024
Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Alexander Levine
Peter Stone
Amy Zhang
OffRL
29
0
0
03 Oct 2024
DMC-VB: A Benchmark for Representation Learning for Control with Visual
  Distractors
DMC-VB: A Benchmark for Representation Learning for Control with Visual Distractors
Joseph Ortiz
Antoine Dedieu
Wolfgang Lehrach
Swaroop Guntupalli
Carter Wendelken
Ahmad Humayun
Guangyao Zhou
Sivaramakrishnan Swaminathan
Miguel Lázaro-Gredilla
Kevin P. Murphy
OffRL
44
1
0
26 Sep 2024
Learning Abstract World Model for Value-preserving Planning with Options
Learning Abstract World Model for Value-preserving Planning with Options
Rafael Rodríguez-Sánchez
G. Konidaris
22
1
0
22 Jun 2024
Learning Latent Dynamic Robust Representations for World Models
Learning Latent Dynamic Robust Representations for World Models
Ruixiang Sun
Hongyu Zang
Xin-hui Li
Riashat Islam
21
4
0
10 May 2024
Generalizing Multi-Step Inverse Models for Representation Learning to
  Finite-Memory POMDPs
Generalizing Multi-Step Inverse Models for Representation Learning to Finite-Memory POMDPs
Lili Wu
Ben Evans
Riashat Islam
Raihan Seraj
Yonathan Efroni
Alex Lamb
33
1
0
22 Apr 2024
Learning Action-based Representations Using Invariance
Learning Action-based Representations Using Invariance
Max Rudolph
Caleb Chuck
Kevin Black
Misha Lvovsky
S. Niekum
Amy Zhang
26
0
0
25 Mar 2024
Multistep Inverse Is Not All You Need
Multistep Inverse Is Not All You Need
Alexander Levine
Peter Stone
Amy Zhang
AI4CE
22
4
0
18 Mar 2024
Foundation Policies with Hilbert Representations
Foundation Policies with Hilbert Representations
Seohong Park
Tobias Kreiman
Sergey Levine
SSL
OffRL
39
18
0
23 Feb 2024
Reward-Relevance-Filtered Linear Offline Reinforcement Learning
Reward-Relevance-Filtered Linear Offline Reinforcement Learning
Angela Zhou
OffRL
20
3
0
23 Jan 2024
Learning Cognitive Maps from Transformer Representations for Efficient
  Planning in Partially Observed Environments
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments
Antoine Dedieu
Wolfgang Lehrach
Guangyao Zhou
Dileep George
Miguel Lazaro-Gredilla
29
2
0
11 Jan 2024
Mastering Robot Manipulation with Multimodal Prompts through Pretraining
  and Multi-task Fine-tuning
Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning
Jiachen Li
Qiaozi Gao
Michael Johnston
Xiaofeng Gao
Xuehai He
Suhaila Shakiah
Hangjie Shi
R. Ghanadan
William Yang Wang
LM&Ro
19
12
0
14 Oct 2023
Guide Your Agent with Adaptive Multimodal Rewards
Guide Your Agent with Adaptive Multimodal Rewards
Changyeon Kim
Younggyo Seo
Hao Liu
Lisa Lee
Jinwoo Shin
Honglak Lee
Kimin Lee
16
9
0
19 Sep 2023
TACO: Temporal Latent Action-Driven Contrastive Loss for Visual
  Reinforcement Learning
TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Ruijie Zheng
Xiyao Wang
Yanchao Sun
Shuang Ma
Jieyu Zhao
Huazhe Xu
Hal Daumé
Furong Huang
40
35
0
22 Jun 2023
Fast exploration and learning of latent graphs with aliased observations
Fast exploration and learning of latent graphs with aliased observations
Miguel Lazaro-Gredilla
Ishani Deshpande
Siva K. Swaminathan
Meet Dave
Dileep George
13
3
0
13 Mar 2023
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
1