ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08670
  4. Cited By
Gradient-based data and parameter dimension reduction for Bayesian
  models: an information theoretic perspective

Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective

18 July 2022
Ricardo Baptista
Youssef Marzouk
O. Zahm
ArXiv (abs)PDFHTML

Papers citing "Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective"

9 / 9 papers shown
Title
A friendly introduction to triangular transport
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
91
0
0
27 Mar 2025
Dimension reduction via score ratio matching
Dimension reduction via score ratio matching
Ricardo Baptista
Michael C. Brennan
Youssef Marzouk
47
1
0
25 Oct 2024
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
109
1
0
19 Jun 2024
Distributed Nonlinear Filtering using Triangular Transport Maps
Distributed Nonlinear Filtering using Triangular Transport Maps
Daniel Grange
Ricardo Baptista
Amirhossein Taghvaei
Allen R. Tannenbaum
Sean Phillips
70
1
0
29 Oct 2023
An adaptive ensemble filter for heavy-tailed distributions: tuning-free
  inflation and localization
An adaptive ensemble filter for heavy-tailed distributions: tuning-free inflation and localization
M. Le Provost
Ricardo Baptista
J. Eldredge
Youssef Marzouk
43
1
0
12 Oct 2023
Learning Active Subspaces for Effective and Scalable Uncertainty
  Quantification in Deep Neural Networks
Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Sanket Jantre
Nathan M. Urban
Xiaoning Qian
Byung-Jun Yoon
BDLUQCV
68
5
0
06 Sep 2023
Principal Feature Detection via $Φ$-Sobolev Inequalities
Principal Feature Detection via ΦΦΦ-Sobolev Inequalities
Matthew T.C. Li
Youssef Marzouk
O. Zahm
63
9
0
10 May 2023
Ensemble transport smoothing. Part II: Nonlinear updates
Ensemble transport smoothing. Part II: Nonlinear updates
M. Ramgraber
Ricardo Baptista
D. McLaughlin
Youssef Marzouk
54
6
0
31 Oct 2022
Derivative-Informed Neural Operator: An Efficient Framework for
  High-Dimensional Parametric Derivative Learning
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
102
42
0
21 Jun 2022
1