Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.10561
Cited By
Careful What You Wish For: on the Extraction of Adversarially Trained Models
21 July 2022
Kacem Khaled
Gabriela Nicolescu
F. Magalhães
MIACV
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Careful What You Wish For: on the Extraction of Adversarially Trained Models"
6 / 6 papers shown
Title
Attackers Can Do Better: Over- and Understated Factors of Model Stealing Attacks
Daryna Oliynyk
Rudolf Mayer
Andreas Rauber
AAML
44
0
0
08 Mar 2025
A Survey on Adversarial Machine Learning for Code Data: Realistic Threats, Countermeasures, and Interpretations
Yulong Yang
Haoran Fan
Chenhao Lin
Qian Li
Zhengyu Zhao
Chao Shen
Xiaohong Guan
AAML
43
0
0
12 Nov 2024
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
47
2
0
07 Dec 2023
Self-Deception: Reverse Penetrating the Semantic Firewall of Large Language Models
Zhenhua Wang
Wei Xie
Kai Chen
Baosheng Wang
Zhiwen Gui
Enze Wang
AAML
SILM
20
6
0
16 Aug 2023
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
263
5,833
0
08 Jul 2016
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1