ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11911
  4. Cited By
NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for
  Geometry and Texture Editing

NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for Geometry and Texture Editing

25 July 2022
Bangbang Yang
Chong Bao
Junyi Zeng
Hujun Bao
Yinda Zhang
Zhaopeng Cui
Guofeng Zhang
    3DH
    AI4CE
ArXivPDFHTML

Papers citing "NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for Geometry and Texture Editing"

4 / 4 papers shown
Title
3D StreetUnveiler with Semantic-aware 2DGS -- a simple baseline
3D StreetUnveiler with Semantic-aware 2DGS -- a simple baseline
Jingwei Xu
Yikai Wang
Yiqun Zhao
Yanwei Fu
Shenghua Gao
3DGS
33
2
0
28 May 2024
Neural Body: Implicit Neural Representations with Structured Latent
  Codes for Novel View Synthesis of Dynamic Humans
Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
Sida Peng
Yuanqing Zhang
Yinghao Xu
Qianqian Wang
Qing Shuai
Hujun Bao
Xiaowei Zhou
3DH
173
593
0
31 Dec 2020
Neural Sparse Voxel Fields
Neural Sparse Voxel Fields
Lingjie Liu
Jiatao Gu
Kyaw Zaw Lin
Tat-Seng Chua
Christian Theobalt
157
1,064
0
22 Jul 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
199
12,351
0
02 Dec 2016
1