ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.14663
  4. Cited By
Going Off-Grid: Continuous Implicit Neural Representations for 3D
  Vascular Modeling

Going Off-Grid: Continuous Implicit Neural Representations for 3D Vascular Modeling

29 July 2022
Dieuwertje Alblas
Christoph Brune
K. K. Yeung
J. Wolterink
    AI4CE
ArXivPDFHTML

Papers citing "Going Off-Grid: Continuous Implicit Neural Representations for 3D Vascular Modeling"

13 / 13 papers shown
Title
Generating visual explanations from deep networks using implicit neural representations
Generating visual explanations from deep networks using implicit neural representations
Michal Byra
Henrik Skibbe
GAN
FAtt
29
0
0
20 Jan 2025
Compact Implicit Neural Representations for Plane Wave Images
Compact Implicit Neural Representations for Plane Wave Images
Mathilde Monvoisin
Yuxin Zhang
Diana Mateus
22
0
0
17 Sep 2024
Enhancing Dynamic CT Image Reconstruction with Neural Fields Through
  Explicit Motion Regularizers
Enhancing Dynamic CT Image Reconstruction with Neural Fields Through Explicit Motion Regularizers
Pablo Arratia
Matthias Ehrhardt
Lisa Kreusser
16
0
0
03 Jun 2024
Global Control for Local SO(3)-Equivariant Scale-Invariant Vessel
  Segmentation
Global Control for Local SO(3)-Equivariant Scale-Invariant Vessel Segmentation
Patryk Rygiel
Dieuwertje Alblas
Christoph Brune
K. K. Yeung
J. Wolterink
33
0
0
22 Mar 2024
$TrIND$: Representing Anatomical Trees by Denoising Diffusion of
  Implicit Neural Fields
TrINDTrINDTrIND: Representing Anatomical Trees by Denoising Diffusion of Implicit Neural Fields
Ashish Sinha
Ghassan Hamarneh
MedIm
AI4CE
33
1
0
13 Mar 2024
SIRE: scale-invariant, rotation-equivariant estimation of artery
  orientations using graph neural networks
SIRE: scale-invariant, rotation-equivariant estimation of artery orientations using graph neural networks
Dieuwertje Alblas
Julian Suk
Christoph Brune
K. K. Yeung
J. Wolterink
MedIm
24
4
0
09 Nov 2023
TiAVox: Time-aware Attenuation Voxels for Sparse-view 4D DSA
  Reconstruction
TiAVox: Time-aware Attenuation Voxels for Sparse-view 4D DSA Reconstruction
Zhenghong Zhou
Huangxuan Zhao
Jiemin Fang
D. Xiang
Lei Chen
Lingxia Wu
Feihong Wu
Wenyu Liu
Chuansheng Zheng
Xinggang Wang
24
6
0
05 Sep 2023
Shape of my heart: Cardiac models through learned signed distance
  functions
Shape of my heart: Cardiac models through learned signed distance functions
Jan Verhulsdonk
Thomas Grandits
F. Sahli Costabal
Thomas Pinetz
Rolf Krause
A. Auricchio
Gundolf Haase
Simone Pezzuto
Alexander Effland
36
4
0
31 Aug 2023
VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel
  Synthesis
VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis
Paula Feldman
Miguel Fainstein
Viviana Siless
C. Delrieux
Emmanuel Iarussi
MedIm
28
3
0
07 Jul 2023
Implicit Neural Representations for Modeling of Abdominal Aortic
  Aneurysm Progression
Implicit Neural Representations for Modeling of Abdominal Aortic Aneurysm Progression
Dieuwertje Alblas
Marie‐Claude Hofman
Christoph Brune
K. K. Yeung
J. Wolterink
MedIm
AI4CE
15
4
0
02 Mar 2023
Implicit neural representations for unsupervised super-resolution and
  denoising of 4D flow MRI
Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI
S. Saitta
M. Carioni
Subhadip Mukherjee
Carola-Bibiane Schönlieb
A. Redaelli
6
8
0
24 Feb 2023
Deep learning for cardiac image segmentation: A review
Deep learning for cardiac image segmentation: A review
C. L. P. Chen
C. Qin
Huaqi Qiu
G. Tarroni
Jinming Duan
Wenjia Bai
Daniel Rueckert
SSeg
3DV
53
672
0
09 Nov 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1