Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.01705
Cited By
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
2 August 2022
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry"
5 / 5 papers shown
Title
Model uncertainty quantification using feature confidence sets for outcome excursions
Junting Ren
Armin Schwartzman
51
0
0
28 Apr 2025
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
189
259
0
18 Apr 2021
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
60
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1