Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.01711
Cited By
Optimal Rates for Regularized Conditional Mean Embedding Learning
2 August 2022
Zhu Li
D. Meunier
Mattes Mollenhauer
A. Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Rates for Regularized Conditional Mean Embedding Learning"
34 / 34 papers shown
Title
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
61
1
0
10 Feb 2025
Kernel-Based Optimal Control: An Infinitesimal Generator Approach
Petar Bevanda
Nicolas Hosichen
Tobias Wittmann
Jan Brüdigam
Sandra Hirche
Boris Houska
65
0
0
02 Dec 2024
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
27
2
0
30 Oct 2024
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
P. Novelli
Massimiliano Pontil
21
0
0
18 Oct 2024
Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
Petar Bevanda
Nicolas Hoischen
Stefan Sosnowski
Sandra Hirche
Boris Houska
18
2
0
23 Jul 2024
Spectral Representation for Causal Estimation with Hidden Confounders
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
CML
24
1
0
15 Jul 2024
Operator World Models for Reinforcement Learning
P. Novelli
Marco Prattico
Massimiliano Pontil
C. Ciliberto
OffRL
34
0
0
28 Jun 2024
On the Consistency of Kernel Methods with Dependent Observations
P. Massiani
Sebastian Trimpe
Friedrich Solowjow
13
0
0
10 Jun 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
D. Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
29
4
0
23 May 2024
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
Massimiliano Pontil
DiffM
19
4
0
21 May 2024
Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings
Oliver Schon
Zhengang Zhong
Sadegh Soudjani
19
7
0
15 Mar 2024
Practical Kernel Tests of Conditional Independence
Roman Pogodin
Antonin Schrab
Yazhe Li
Danica J. Sutherland
A. Gretton
35
4
0
20 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
13
2
0
01 Feb 2024
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Prune Inzerilli
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
8
4
0
20 Dec 2023
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
D. Meunier
Mattes Mollenhauer
Arthur Gretton
21
5
0
12 Dec 2023
Kernel Single Proxy Control for Deterministic Confounding
Liyuan Xu
A. Gretton
CML
19
2
0
08 Aug 2023
Learning invariant representations of time-homogeneous stochastic dynamical systems
Vladimir Kostic
P. Novelli
Riccardo Grazzi
Karim Lounici
Massimiliano Pontil
14
7
0
19 Jul 2023
Conditional expectation using compactification operators
Suddhasattwa Das
15
3
0
18 Jun 2023
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
Giacomo Meanti
Antoine Chatalic
Vladimir Kostic
P. Novelli
Massimiliano Pontil
Lorenzo Rosasco
6
9
0
07 Jun 2023
On the Optimality of Misspecified Kernel Ridge Regression
Haobo Zhang
Yicheng Li
Weihao Lu
Qian Lin
34
12
0
12 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
8
0
0
27 Apr 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
18
5
0
26 Apr 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
8
14
0
27 Mar 2023
Sharp Spectral Rates for Koopman Operator Learning
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
22
20
0
03 Feb 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
31
0
0
26 Jan 2023
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control
Adam J. Thorpe
Cyrus Neary
Franck Djeumou
Meeko Oishi
Ufuk Topcu
12
7
0
09 Jan 2023
Efficient Conditionally Invariant Representation Learning
Roman Pogodin
Namrata Deka
Yazhe Li
Danica J. Sutherland
Victor Veitch
A. Gretton
BDL
OOD
CML
17
16
0
16 Dec 2022
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
19
24
0
16 Nov 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
16
11
0
28 Sep 2022
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
24
3
0
06 Nov 2021
Nonparametric approximation of conditional expectation operators
Mattes Mollenhauer
P. Koltai
21
17
0
23 Dec 2020
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
OffRL
40
26
0
10 Oct 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
25
15
0
01 Jun 2020
Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence
Mattes Mollenhauer
Stefan Klus
Christof Schütte
P. Koltai
17
8
0
02 Apr 2020
1