ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.01711
  4. Cited By
Optimal Rates for Regularized Conditional Mean Embedding Learning

Optimal Rates for Regularized Conditional Mean Embedding Learning

2 August 2022
Zhu Li
D. Meunier
Mattes Mollenhauer
A. Gretton
ArXivPDFHTML

Papers citing "Optimal Rates for Regularized Conditional Mean Embedding Learning"

34 / 34 papers shown
Title
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
61
1
0
10 Feb 2025
Kernel-Based Optimal Control: An Infinitesimal Generator Approach
Kernel-Based Optimal Control: An Infinitesimal Generator Approach
Petar Bevanda
Nicolas Hosichen
Tobias Wittmann
Jan Brüdigam
Sandra Hirche
Boris Houska
65
0
0
02 Dec 2024
An Overview of Causal Inference using Kernel Embeddings
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
27
2
0
30 Oct 2024
Laplace Transform Based Low-Complexity Learning of Continuous Markov
  Semigroups
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
P. Novelli
Massimiliano Pontil
21
0
0
18 Oct 2024
Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
Petar Bevanda
Nicolas Hoischen
Stefan Sosnowski
Sandra Hirche
Boris Houska
18
2
0
23 Jul 2024
Spectral Representation for Causal Estimation with Hidden Confounders
Spectral Representation for Causal Estimation with Hidden Confounders
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
CML
24
1
0
15 Jul 2024
Operator World Models for Reinforcement Learning
Operator World Models for Reinforcement Learning
P. Novelli
Marco Prattico
Massimiliano Pontil
C. Ciliberto
OffRL
34
0
0
28 Jun 2024
On the Consistency of Kernel Methods with Dependent Observations
On the Consistency of Kernel Methods with Dependent Observations
P. Massiani
Sebastian Trimpe
Friedrich Solowjow
13
0
0
10 Jun 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning
  Algorithms
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
D. Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
29
4
0
23 May 2024
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
Massimiliano Pontil
DiffM
19
4
0
21 May 2024
Data-Driven Distributionally Robust Safety Verification Using Barrier
  Certificates and Conditional Mean Embeddings
Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings
Oliver Schon
Zhengang Zhong
Sadegh Soudjani
19
7
0
15 Mar 2024
Practical Kernel Tests of Conditional Independence
Practical Kernel Tests of Conditional Independence
Roman Pogodin
Antonin Schrab
Yazhe Li
Danica J. Sutherland
A. Gretton
35
4
0
20 Feb 2024
Spectrally Transformed Kernel Regression
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
13
2
0
01 Feb 2024
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Prune Inzerilli
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
8
4
0
20 Dec 2023
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized
  Least-Squares Algorithm
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
D. Meunier
Mattes Mollenhauer
Arthur Gretton
21
5
0
12 Dec 2023
Kernel Single Proxy Control for Deterministic Confounding
Kernel Single Proxy Control for Deterministic Confounding
Liyuan Xu
A. Gretton
CML
19
2
0
08 Aug 2023
Learning invariant representations of time-homogeneous stochastic
  dynamical systems
Learning invariant representations of time-homogeneous stochastic dynamical systems
Vladimir Kostic
P. Novelli
Riccardo Grazzi
Karim Lounici
Massimiliano Pontil
14
7
0
19 Jul 2023
Conditional expectation using compactification operators
Conditional expectation using compactification operators
Suddhasattwa Das
15
3
0
18 Jun 2023
Estimating Koopman operators with sketching to provably learn large
  scale dynamical systems
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
Giacomo Meanti
Antoine Chatalic
Vladimir Kostic
P. Novelli
Massimiliano Pontil
Lorenzo Rosasco
6
9
0
07 Jun 2023
On the Optimality of Misspecified Kernel Ridge Regression
On the Optimality of Misspecified Kernel Ridge Regression
Haobo Zhang
Yicheng Li
Weihao Lu
Qian Lin
34
12
0
12 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
  Models
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
8
0
0
27 Apr 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
18
5
0
26 Apr 2023
On the Optimality of Misspecified Spectral Algorithms
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
8
14
0
27 Mar 2023
Sharp Spectral Rates for Koopman Operator Learning
Sharp Spectral Rates for Koopman Operator Learning
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
22
20
0
03 Feb 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
31
0
0
26 Jan 2023
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
  with Data-Driven Control
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control
Adam J. Thorpe
Cyrus Neary
Franck Djeumou
Meeko Oishi
Ufuk Topcu
12
7
0
09 Jan 2023
Efficient Conditionally Invariant Representation Learning
Efficient Conditionally Invariant Representation Learning
Roman Pogodin
Namrata Deka
Yazhe Li
Danica J. Sutherland
Victor Veitch
A. Gretton
BDL
OOD
CML
17
16
0
16 Dec 2022
Learning linear operators: Infinite-dimensional regression as a
  well-behaved non-compact inverse problem
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
19
24
0
16 Nov 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
16
11
0
28 Sep 2022
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
24
3
0
06 Nov 2021
Nonparametric approximation of conditional expectation operators
Nonparametric approximation of conditional expectation operators
Mattes Mollenhauer
P. Koltai
21
17
0
23 Dec 2020
Kernel Methods for Causal Functions: Dose, Heterogeneous, and
  Incremental Response Curves
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
OffRL
40
26
0
10 Oct 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
25
15
0
01 Jun 2020
Kernel Autocovariance Operators of Stationary Processes: Estimation and
  Convergence
Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence
Mattes Mollenhauer
Stefan Klus
Christof Schütte
P. Koltai
17
8
0
02 Apr 2020
1