ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.10904
  4. Cited By
A Provably Efficient Model-Free Posterior Sampling Method for Episodic
  Reinforcement Learning

A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning

23 August 2022
Christoph Dann
M. Mohri
Tong Zhang
Julian Zimmert
    OffRL
ArXivPDFHTML

Papers citing "A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning"

27 / 27 papers shown
Title
A Single Goal is All You Need: Skills and Exploration Emerge from
  Contrastive RL without Rewards, Demonstrations, or Subgoals
A Single Goal is All You Need: Skills and Exploration Emerge from Contrastive RL without Rewards, Demonstrations, or Subgoals
Grace Liu
Michael Tang
Benjamin Eysenbach
OffRL
40
0
0
11 Aug 2024
Misspecified $Q$-Learning with Sparse Linear Function Approximation:
  Tight Bounds on Approximation Error
Misspecified QQQ-Learning with Sparse Linear Function Approximation: Tight Bounds on Approximation Error
Ally Yalei Du
Lin F. Yang
Ruosong Wang
21
0
0
18 Jul 2024
Satisficing Exploration for Deep Reinforcement Learning
Satisficing Exploration for Deep Reinforcement Learning
Dilip Arumugam
Saurabh Kumar
Ramki Gummadi
Benjamin Van Roy
30
1
0
16 Jul 2024
More Efficient Randomized Exploration for Reinforcement Learning via
  Approximate Sampling
More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Haque Ishfaq
Yixin Tan
Yu Yang
Qingfeng Lan
Jianfeng Lu
A. Rupam Mahmood
Doina Precup
Pan Xu
21
4
0
18 Jun 2024
Bayesian Design Principles for Offline-to-Online Reinforcement Learning
Bayesian Design Principles for Offline-to-Online Reinforcement Learning
Haotian Hu
Yiqin Yang
Jianing Ye
Chengjie Wu
Ziqing Mai
Yujing Hu
Tangjie Lv
Changjie Fan
Qianchuan Zhao
Chongjie Zhang
OffRL
OnRL
29
3
0
31 May 2024
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with
  General Function Approximation
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
Jianliang He
Han Zhong
Zhuoran Yang
16
6
0
19 Apr 2024
Regret Minimization via Saddle Point Optimization
Regret Minimization via Saddle Point Optimization
Johannes Kirschner
Seyed Alireza Bakhtiari
Kushagra Chandak
Volodymyr Tkachuk
Csaba Szepesvári
18
1
0
15 Mar 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice
  via HyperAgent
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
18
6
0
05 Feb 2024
On Sample-Efficient Offline Reinforcement Learning: Data Diversity,
  Posterior Sampling, and Beyond
On Sample-Efficient Offline Reinforcement Learning: Data Diversity, Posterior Sampling, and Beyond
Thanh Nguyen-Tang
Raman Arora
OffRL
15
3
0
06 Jan 2024
Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement
  Learning with General Function Approximation
Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement Learning with General Function Approximation
Jiayi Huang
Han Zhong
Liwei Wang
Lin F. Yang
27
2
0
07 Dec 2023
Improved Bayesian Regret Bounds for Thompson Sampling in Reinforcement
  Learning
Improved Bayesian Regret Bounds for Thompson Sampling in Reinforcement Learning
Ahmadreza Moradipari
M. Pedramfar
Modjtaba Shokrian Zini
Vaneet Aggarwal
13
4
0
30 Oct 2023
Exploiting Causal Graph Priors with Posterior Sampling for Reinforcement
  Learning
Exploiting Causal Graph Priors with Posterior Sampling for Reinforcement Learning
Mirco Mutti
Ric De Santi
Marcello Restelli
Alexander Marx
Giorgia Ramponi
CML
19
4
0
11 Oct 2023
Sample-Efficient Multi-Agent RL: An Optimization Perspective
Sample-Efficient Multi-Agent RL: An Optimization Perspective
Nuoya Xiong
Zhihan Liu
Zhaoran Wang
Zhuoran Yang
34
1
0
10 Oct 2023
Maximize to Explore: One Objective Function Fusing Estimation, Planning,
  and Exploration
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
OffRL
25
22
0
29 May 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
13
20
0
29 May 2023
The Benefits of Being Distributional: Small-Loss Bounds for
  Reinforcement Learning
The Benefits of Being Distributional: Small-Loss Bounds for Reinforcement Learning
Kaiwen Wang
Kevin Zhou
Runzhe Wu
Nathan Kallus
Wen Sun
OffRL
15
17
0
25 May 2023
Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
Botao Hao
Rahul Jain
Dengwang Tang
Zheng Wen
OffRL
19
2
0
20 Mar 2023
Eluder-based Regret for Stochastic Contextual MDPs
Eluder-based Regret for Stochastic Contextual MDPs
Orin Levy
Asaf B. Cassel
Alon Cohen
Yishay Mansour
23
5
0
27 Nov 2022
Model-Free Reinforcement Learning with the Decision-Estimation
  Coefficient
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
14
9
0
25 Nov 2022
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
Wei Xiong
Han Zhong
Chengshuai Shi
Cong Shen
Tong Zhang
53
19
0
04 Oct 2022
Guarantees for Epsilon-Greedy Reinforcement Learning with Function
  Approximation
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation
Christoph Dann
Yishay Mansour
M. Mohri
Ayush Sekhari
Karthik Sridharan
8
49
0
19 Jun 2022
Regret Bounds for Information-Directed Reinforcement Learning
Regret Bounds for Information-Directed Reinforcement Learning
Botao Hao
Tor Lattimore
OffRL
29
17
0
09 Jun 2022
Non-Linear Reinforcement Learning in Large Action Spaces: Structural
  Conditions and Sample-efficiency of Posterior Sampling
Non-Linear Reinforcement Learning in Large Action Spaces: Structural Conditions and Sample-efficiency of Posterior Sampling
Alekh Agarwal
Tong Zhang
8
8
0
15 Mar 2022
Fast Rates in Pool-Based Batch Active Learning
Fast Rates in Pool-Based Batch Active Learning
Claudio Gentile
Zhilei Wang
Tong Zhang
9
14
0
11 Feb 2022
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value
  Iteration
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration
Priyank Agrawal
Jinglin Chen
Nan Jiang
24
18
0
23 Oct 2020
Nonstationary Reinforcement Learning with Linear Function Approximation
Nonstationary Reinforcement Learning with Linear Function Approximation
Huozhi Zhou
Jinglin Chen
L. Varshney
A. Jagmohan
21
30
0
08 Oct 2020
Optimism in Reinforcement Learning with Generalized Linear Function
  Approximation
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
127
135
0
09 Dec 2019
1