Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.11356
Cited By
Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors
24 August 2022
Gongjie Zhang
Zhipeng Luo
Zichen Tian
Yingchen Yu
Jingyi Zhang
Shijian Lu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors"
8 / 8 papers shown
Title
Cross Resolution Encoding-Decoding For Detection Transformers
Ashish Kumar
Jaesik Park
ViT
21
0
0
05 Oct 2024
DETR Doesn't Need Multi-Scale or Locality Design
Yutong Lin
Yuhui Yuan
Zheng-Wei Zhang
Chen Li
Nanning Zheng
Han Hu
25
5
0
03 Aug 2023
DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR
Shilong Liu
Feng Li
Hao Zhang
X. Yang
Xianbiao Qi
Hang Su
Jun Zhu
Lei Zhang
ViT
138
703
0
28 Jan 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector
Hwanjun Song
Deqing Sun
Sanghyuk Chun
Varun Jampani
Dongyoon Han
Byeongho Heo
Wonjae Kim
Ming-Hsuan Yang
78
75
0
08 Oct 2021
Hallucination Improves Few-Shot Object Detection
Weilin Zhang
Yu-xiong Wang
ObjD
52
109
0
04 May 2021
BorderDet: Border Feature for Dense Object Detection
Han Qiu
Yuchen Ma
Zeming Li
Songtao Liu
Jian-jun Sun
ObjD
82
122
0
21 Jul 2020
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
F. I. F. Richard Yu
ObjD
75
535
0
16 Mar 2020
Meta R-CNN : Towards General Solver for Instance-level Few-shot Learning
Xiaopeng Yan
Ziliang Chen
Anni Xu
Xiaoxi Wang
Xiaodan Liang
Liang Lin
ObjD
151
440
0
28 Sep 2019
1