ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11408
  4. Cited By
Explainable AI for tailored electricity consumption feedback -- an
  experimental evaluation of visualizations

Explainable AI for tailored electricity consumption feedback -- an experimental evaluation of visualizations

European Conference on Information Systems (ECIS), 2022
24 August 2022
Jacqueline Wastensteiner
T. Weiß
Felix Haag
K. Hopf
ArXiv (abs)PDFHTML

Papers citing "Explainable AI for tailored electricity consumption feedback -- an experimental evaluation of visualizations"

6 / 6 papers shown
Title
Overcoming Anchoring Bias: The Potential of AI and XAI-based Decision
  Support
Overcoming Anchoring Bias: The Potential of AI and XAI-based Decision Support
Felix Haag
Carlo Stingl
Katrin Zerfass
K. Hopf
Thorsten Staake
134
7
0
08 May 2024
Designing Explainable Predictive Machine Learning Artifacts: Methodology
  and Practical Demonstration
Designing Explainable Predictive Machine Learning Artifacts: Methodology and Practical Demonstration
Giacomo Welsch
Peter Kowalczyk
126
2
0
20 Jun 2023
Incremental Permutation Feature Importance (iPFI): Towards Online
  Explanations on Data Streams
Incremental Permutation Feature Importance (iPFI): Towards Online Explanations on Data StreamsMachine-mediated learning (ML), 2022
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
193
32
0
05 Sep 2022
Augmented cross-selling through explainable AI -- a case from energy
  retailing
Augmented cross-selling through explainable AI -- a case from energy retailingEuropean Conference on Information Systems (ECIS), 2022
Felix Haag
K. Hopf
Pedro Menelau Vasconcelos
Thorsten Staake
129
5
0
24 Aug 2022
GAM(e) changer or not? An evaluation of interpretable machine learning
  models based on additive model constraints
GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraintsEuropean Conference on Information Systems (ECIS), 2022
Patrick Zschech
Sven Weinzierl
Nico Hambauer
Sandra Zilker
Mathias Kraus
230
15
0
19 Apr 2022
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
2.2K
19,420
0
16 Feb 2016
1