ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11625
  4. Cited By
PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead
  of Models -- Federated Learning in Age of Foundation Model

PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead of Models -- Federated Learning in Age of Foundation Model

24 August 2022
Tao Guo
Song Guo
Junxiao Wang
Wenchao Xu
    FedML
    VLM
    LRM
ArXivPDFHTML

Papers citing "PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead of Models -- Federated Learning in Age of Foundation Model"

24 / 24 papers shown
Title
FedSDAF: Leveraging Source Domain Awareness for Enhanced Federated Domain Generalization
FedSDAF: Leveraging Source Domain Awareness for Enhanced Federated Domain Generalization
H. Li
Zesheng Zhou
Zhenbiao Cao
X. Li
Wei Chen
X. Zhang
FedML
33
0
0
05 May 2025
FedMVP: Federated Multi-modal Visual Prompt Tuning for Vision-Language Models
FedMVP: Federated Multi-modal Visual Prompt Tuning for Vision-Language Models
Mainak Singha
Subhankar Roy
Sarthak Mehrotra
Ankit Jha
Moloud Abdar
Biplab Banerjee
Elisa Ricci
VLM
VPVLM
108
0
0
29 Apr 2025
Capture Global Feature Statistics for One-Shot Federated Learning
Zenghao Guan
Yucan Zhou
Xiaoyan Gu
FedML
63
0
0
10 Mar 2025
FAA-CLIP: Federated Adversarial Adaptation of CLIP
Yihang Wu
A. Chaddad
Christian Desrosiers
Tareef Daqqaq
R. Kateb
VLM
49
0
0
26 Feb 2025
Vision Foundation Models in Medical Image Analysis: Advances and Challenges
Vision Foundation Models in Medical Image Analysis: Advances and Challenges
Pengchen Liang
Bin Pu
Haishan Huang
Yiwei Li
H. Wang
Weibo Ma
Qing Chang
VLM
MedIm
99
0
0
24 Feb 2025
Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models
Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models
Jun Luo
C. L. P. Chen
Shandong Wu
FedML
VLM
MoE
36
3
0
14 Oct 2024
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Pengxin Guo
Shuang Zeng
Y. Wang
Huijie Fan
Feifei Wang
Liangqiong Qu
FedML
36
8
0
02 Oct 2024
Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in
  the Era of Large Language Models
Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models
Jinliang Lu
Ziliang Pang
Min Xiao
Yaochen Zhu
Rui Xia
Jiajun Zhang
MoMe
29
17
0
08 Jul 2024
On-Demand Model and Client Deployment in Federated Learning with Deep
  Reinforcement Learning
On-Demand Model and Client Deployment in Federated Learning with Deep Reinforcement Learning
M. Chahoud
Hani Sami
Azzam Mourad
Hadi Otrok
Jamal Bentahar
Mohsen Guizani
24
0
0
12 May 2024
Efficient Model Personalization in Federated Learning via
  Client-Specific Prompt Generation
Efficient Model Personalization in Federated Learning via Client-Specific Prompt Generation
Fu-En Yang
Chien-Yi Wang
Yu-Chiang Frank Wang
VLM
FedML
9
58
0
29 Aug 2023
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
C. L. P. Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
86
85
0
27 Jun 2023
FedTune: A Deep Dive into Efficient Federated Fine-Tuning with
  Pre-trained Transformers
FedTune: A Deep Dive into Efficient Federated Fine-Tuning with Pre-trained Transformers
Jinyu Chen
Wenchao Xu
Song Guo
Junxiao Wang
Jie M. Zhang
Haozhao Wang
FedML
15
32
0
15 Nov 2022
Federated Adaptive Prompt Tuning for Multi-Domain Collaborative Learning
Federated Adaptive Prompt Tuning for Multi-Domain Collaborative Learning
Shangchao Su
Min Yang
Bin Li
Xiangyang Xue
VLM
FedML
19
17
0
15 Nov 2022
On the Difficulty of Defending Self-Supervised Learning against Model
  Extraction
On the Difficulty of Defending Self-Supervised Learning against Model Extraction
Adam Dziedzic
Nikita Dhawan
Muhammad Ahmad Kaleem
Jonas Guan
Nicolas Papernot
MIACV
46
22
0
16 May 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
Andreas Fürst
Elisabeth Rumetshofer
Johannes Lehner
Viet-Hung Tran
Fei Tang
...
David P. Kreil
Michael K Kopp
G. Klambauer
Angela Bitto-Nemling
Sepp Hochreiter
VLM
CLIP
199
101
0
21 Oct 2021
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text
  Understanding
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding
Hu Xu
Gargi Ghosh
Po-Yao (Bernie) Huang
Dmytro Okhonko
Armen Aghajanyan
Florian Metze
Luke Zettlemoyer
Florian Metze Luke Zettlemoyer Christoph Feichtenhofer
CLIP
VLM
245
554
0
28 Sep 2021
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
322
2,249
0
02 Sep 2021
How Much Can CLIP Benefit Vision-and-Language Tasks?
How Much Can CLIP Benefit Vision-and-Language Tasks?
Sheng Shen
Liunian Harold Li
Hao Tan
Mohit Bansal
Anna Rohrbach
Kai-Wei Chang
Z. Yao
Kurt Keutzer
CLIP
VLM
MLLM
185
403
0
13 Jul 2021
Open-vocabulary Object Detection via Vision and Language Knowledge
  Distillation
Open-vocabulary Object Detection via Vision and Language Knowledge Distillation
Xiuye Gu
Tsung-Yi Lin
Weicheng Kuo
Yin Cui
VLM
ObjD
223
897
0
28 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
3,683
0
11 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
85
936
0
03 Feb 2021
WARP: Word-level Adversarial ReProgramming
WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan
Hrant Khachatrian
Jonathan May
AAML
254
340
0
01 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,898
0
31 Dec 2020
1