ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.12104
  4. Cited By
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields

Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields

25 August 2022
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
    AI4CE
ArXivPDFHTML

Papers citing "Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields"

3 / 3 papers shown
Title
Scaling up machine learning-based chemical plant simulation: A method
  for fine-tuning a model to induce stable fixed points
Scaling up machine learning-based chemical plant simulation: A method for fine-tuning a model to induce stable fixed points
Malte Esders
G. A. Ramirez
M. Gastegger
S. Samal
17
1
0
25 Jul 2023
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
151
245
0
01 May 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
127
422
0
10 Mar 2020
1