ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.12348
  4. Cited By
SNAP: Efficient Extraction of Private Properties with Poisoning

SNAP: Efficient Extraction of Private Properties with Poisoning

25 August 2022
Harsh Chaudhari
John Abascal
Alina Oprea
Matthew Jagielski
Florian Tramèr
Jonathan R. Ullman
    MIACV
ArXivPDFHTML

Papers citing "SNAP: Efficient Extraction of Private Properties with Poisoning"

8 / 8 papers shown
Title
Range Membership Inference Attacks
Range Membership Inference Attacks
Jiashu Tao
Reza Shokri
40
1
0
09 Aug 2024
Summary Statistic Privacy in Data Sharing
Summary Statistic Privacy in Data Sharing
Zinan Lin
Shuaiqi Wang
Vyas Sekar
Giulia Fanti
38
7
0
03 Mar 2023
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference
  Privacy in Machine Learning
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David E. Evans
Boris Köpf
Andrew J. Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
39
35
0
21 Dec 2022
Energy-Latency Attacks via Sponge Poisoning
Energy-Latency Attacks via Sponge Poisoning
Antonio Emanuele Cinà
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
SILM
39
29
0
14 Mar 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
146
349
0
25 Sep 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
278
1,812
0
14 Dec 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
189
358
0
24 Mar 2020
1