ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.00961
  4. Cited By
LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile
  Devices

LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile Devices

2 September 2022
Zhenyu Li
Zehui Chen
Jialei Xu
Xianming Liu
Junjun Jiang
    VLM
    MDE
ArXivPDFHTML

Papers citing "LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile Devices"

4 / 4 papers shown
Title
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI &
  AIM 2022 Challenge: Report
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Andrey D. Ignatov
Grigory Malivenko
Radu Timofte
Lukasz Treszczotko
Xin-ke Chang
...
Dongwon Park
Seongmin Hong
Joonhee Lee
Seunggyu Lee
Sengsub Chun
36
17
0
07 Nov 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection
Categorical Depth Distribution Network for Monocular 3D Object Detection
Cody Reading
Ali Harakeh
Julia Chae
Steven L. Waslander
3DPC
230
484
0
01 Mar 2021
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
197
1,708
0
06 Jun 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
1