Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.02681
Cited By
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
6 September 2022
Ameya Dilip Jagtap
George Karniadakis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How important are activation functions in regression and classification? A survey, performance comparison, and future directions"
27 / 27 papers shown
Title
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Sidharth S. Menon
Ameya D. Jagtap
PINN
139
0
0
06 May 2025
Do We Always Need the Simplicity Bias? Looking for Optimal Inductive Biases in the Wild
Damien Teney
Liangze Jiang
Florin Gogianu
Ehsan Abbasnejad
169
0
0
13 Mar 2025
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons
Farhad Pourkamali-Anaraki
35
5
0
16 Sep 2024
Back to the Continuous Attractor
Ábel Ságodi
Guillermo Martín-Sánchez
Piotr Sokól
Il Memming Park
30
2
0
31 Jul 2024
Can all variations within the unified mask-based beamformer framework achieve identical peak extraction performance?
Atsuo Hiroe
Katsutoshi Itoyama
Kazuhiro Nakadai
37
0
0
22 Jul 2024
fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
Alireza Afzal Aghaei
40
47
0
11 Jun 2024
Nonlinearity Enhanced Adaptive Activation Functions
David Yevick
25
1
0
29 Mar 2024
Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty in Scientific Machine Learning
Farhad Pourkamali-Anaraki
Jamal F. Husseini
Scott E. Stapleton
UD
48
2
0
21 Feb 2024
Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics
Michael Penwarden
H. Owhadi
Robert M. Kirby
AI4CE
22
1
0
16 Feb 2024
Adaptive Activation Functions for Predictive Modeling with Sparse Experimental Data
Farhad Pourkamali-Anaraki
Tahamina Nasrin
Robert E. Jensen
Amy M. Peterson
Christopher J. Hansen
24
7
0
08 Feb 2024
RiemannONets: Interpretable Neural Operators for Riemann Problems
Ahmad Peyvan
Vivek Oommen
Ameya Dilip Jagtap
George Karniadakis
AI4CE
38
22
0
16 Jan 2024
Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones
Christian Berger
Sadok Ben Toumia
Zijian Zhou
Zhenya Yan
PINN
28
8
0
29 Sep 2023
Deep smoothness WENO scheme for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Tatiana Kossaczká
Ameya Dilip Jagtap
Matthias Ehrhardt
15
1
0
18 Sep 2023
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
Kamaljyoti Nath
Xuhui Meng
Daniel J. Smith
George Karniadakis
PINN
20
20
0
26 Apr 2023
iPINNs: Incremental learning for Physics-informed neural networks
Aleksandr Dekhovich
M. Sluiter
David Tax
Miguel A. Bessa
AI4CE
DiffM
20
10
0
10 Apr 2023
Learning solution of nonlinear constitutive material models using physics-informed neural networks: COMM-PINN
Shahed Rezaei
Ahmad Moeineddin
Ali Harandi
PINN
32
18
0
10 Apr 2023
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions
Michael Penwarden
Ameya Dilip Jagtap
Shandian Zhe
George Karniadakis
Robert M. Kirby
PINN
AI4CE
23
57
0
28 Feb 2023
Learning stiff chemical kinetics using extended deep neural operators
S. Goswami
Ameya Dilip Jagtap
H. Babaee
Bryan T. Susi
George Karniadakis
AI4CE
35
37
0
23 Feb 2023
Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains
Ali Harandi
Ahmad Moeineddin
Michael Kaliske
Stefanie Reese
Shahed Rezaei
AI4CE
PINN
25
42
0
09 Feb 2023
Self-Supervised Learning for Data Scarcity in a Fatigue Damage Prognostic Problem
A. Akrim
C. Gogu
R. Vingerhoeds
M. Salaün
AI4CE
32
23
0
20 Jan 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
18
22
0
17 Dec 2022
Modular machine learning-based elastoplasticity: generalization in the context of limited data
J. Fuhg
Craig M. Hamel
K. Johnson
Reese E. Jones
N. Bouklas
29
48
0
15 Oct 2022
A Lightweight and Gradient-Stable Neural Layer
Yueyao Yu
Yin Zhang
26
0
0
08 Jun 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks
Tomasz Szandała
59
274
0
15 Oct 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
331
1,049
0
10 Feb 2017
1