ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.03487
  4. Cited By
A simple approach for quantizing neural networks

A simple approach for quantizing neural networks

7 September 2022
J. Maly
Rayan Saab
    MQ
ArXivPDFHTML

Papers citing "A simple approach for quantizing neural networks"

6 / 6 papers shown
Title
Compressing Recurrent Neural Networks for FPGA-accelerated
  Implementation in Fluorescence Lifetime Imaging
Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging
Ismail Erbas
Vikas Pandey
Aporva Amarnath
Naigang Wang
Karthik Swaminathan
Stefan T. Radev
Xavier Intes
AI4CE
19
1
0
01 Oct 2024
Computability of Classification and Deep Learning: From Theoretical
  Limits to Practical Feasibility through Quantization
Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization
Holger Boche
Vít Fojtík
Adalbert Fono
Gitta Kutyniok
35
0
0
12 Aug 2024
MagR: Weight Magnitude Reduction for Enhancing Post-Training
  Quantization
MagR: Weight Magnitude Reduction for Enhancing Post-Training Quantization
Aozhong Zhang
Naigang Wang
Yanxia Deng
Xin Li
Zi Yang
Penghang Yin
MQ
37
4
0
02 Jun 2024
Frame Quantization of Neural Networks
Frame Quantization of Neural Networks
Wojciech Czaja
Sanghoon Na
19
1
0
11 Apr 2024
SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network
  Quantization
SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network Quantization
Jinjie Zhang
Rayan Saab
13
0
0
20 Sep 2023
Tuning-free one-bit covariance estimation using data-driven dithering
Tuning-free one-bit covariance estimation using data-driven dithering
S. Dirksen
J. Maly
23
7
0
24 Jul 2023
1