ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.03487
  4. Cited By
A simple approach for quantizing neural networks
v1v2 (latest)

A simple approach for quantizing neural networks

Applied and Computational Harmonic Analysis (ACHA), 2022
7 September 2022
J. Maly
Rayan Saab
    MQ
ArXiv (abs)PDFHTML

Papers citing "A simple approach for quantizing neural networks"

6 / 6 papers shown
Title
Compressing Recurrent Neural Networks for FPGA-accelerated
  Implementation in Fluorescence Lifetime Imaging
Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging
Ismail Erbas
Vikas Pandey
Aporva Amarnath
Naigang Wang
Karthik Swaminathan
Stefan T. Radev
Xavier Intes
AI4CE
135
1
0
01 Oct 2024
Computability of Classification and Deep Learning: From Theoretical
  Limits to Practical Feasibility through Quantization
Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through QuantizationJournal of Fourier Analysis and Applications (JFAA), 2024
Holger Boche
Vít Fojtík
Adalbert Fono
Gitta Kutyniok
314
1
0
12 Aug 2024
MagR: Weight Magnitude Reduction for Enhancing Post-Training
  Quantization
MagR: Weight Magnitude Reduction for Enhancing Post-Training Quantization
Aozhong Zhang
Naigang Wang
Yanxia Deng
Xin Li
Zi Yang
Penghang Yin
MQ
199
15
0
02 Jun 2024
Frame Quantization of Neural Networks
Frame Quantization of Neural Networks
Wojciech Czaja
Sanghoon Na
166
1
0
11 Apr 2024
SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network
  Quantization
SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network Quantization
Jinjie Zhang
Rayan Saab
159
0
0
20 Sep 2023
Tuning-free one-bit covariance estimation using data-driven dithering
Tuning-free one-bit covariance estimation using data-driven ditheringIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
S. Dirksen
J. Maly
453
9
0
24 Jul 2023
1