ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07806
  4. Cited By
SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid
  Shape Correspondence

SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence

16 September 2022
Lei Li
Souhaib Attaiki
M. Ovsjanikov
ArXivPDFHTML

Papers citing "SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence"

9 / 9 papers shown
Title
Wormhole Loss for Partial Shape Matching
Wormhole Loss for Partial Shape Matching
Amit Bracha
Thomas Dagès
Ron Kimmel
24
2
0
30 Oct 2024
Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape
  Matching via Unsupervised Functional Map Regularized Reconstruction
Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape Matching via Unsupervised Functional Map Regularized Reconstruction
Souhaib Attaiki
M. Ovsjanikov
3DPC
29
2
0
11 Mar 2024
Unsupervised Representation Learning for Diverse Deformable Shape
  Collections
Unsupervised Representation Learning for Diverse Deformable Shape Collections
Sara Hahner
Souhaib Attaiki
Jochen Garcke
M. Ovsjanikov
15
1
0
27 Oct 2023
Zero-Shot 3D Shape Correspondence
Zero-Shot 3D Shape Correspondence
Ahmed Abdelreheem
Abdelrahman Eldesokey
M. Ovsjanikov
Peter Wonka
28
24
0
05 Jun 2023
Learning Multi-resolution Functional Maps with Spectral Attention for
  Robust Shape Matching
Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching
Lei Li
Nicolas Donati
M. Ovsjanikov
21
21
0
12 Oct 2022
PointContrast: Unsupervised Pre-training for 3D Point Cloud
  Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
134
618
0
21 Jul 2020
D3Feat: Joint Learning of Dense Detection and Description of 3D Local
  Features
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
Xuyang Bai
Zixin Luo
Lei Zhou
Hongbo Fu
Long Quan
Chiew-Lan Tai
3DPC
31
375
0
06 Mar 2020
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
115
325
0
13 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1