ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.10040
  4. Cited By
Hybrid Learning- and Model-Based Planning and Control of In-Hand
  Manipulation

Hybrid Learning- and Model-Based Planning and Control of In-Hand Manipulation

20 September 2022
Rana Soltani-Zarrin
K. Yamane
Rianna M. Jitosho
ArXivPDFHTML

Papers citing "Hybrid Learning- and Model-Based Planning and Control of In-Hand Manipulation"

8 / 8 papers shown
Title
GeoDEx: A Unified Geometric Framework for Tactile Dexterous and Extrinsic Manipulation under Force Uncertainty
GeoDEx: A Unified Geometric Framework for Tactile Dexterous and Extrinsic Manipulation under Force Uncertainty
Sirui Chen
Sergio Aguilera Marinovic
Soshi Iba
Rana Soltani Zarrin
19
0
0
01 May 2025
On the Feasibility of A Mixed-Method Approach for Solving Long Horizon
  Task-Oriented Dexterous Manipulation
On the Feasibility of A Mixed-Method Approach for Solving Long Horizon Task-Oriented Dexterous Manipulation
Shaunak A. Mehta
Rana Soltani Zarrin
26
0
0
09 Oct 2024
Diffusion-Informed Probabilistic Contact Search for Multi-Finger
  Manipulation
Diffusion-Informed Probabilistic Contact Search for Multi-Finger Manipulation
Abhinav Kumar
Thomas Power
Fan Yang
Sergio Aguilera Marinovic
Soshi Iba
Rana Soltani Zarrin
Dmitry Berenson
21
0
0
01 Oct 2024
Multi-finger Manipulation via Trajectory Optimization with
  Differentiable Rolling and Geometric Constraints
Multi-finger Manipulation via Trajectory Optimization with Differentiable Rolling and Geometric Constraints
Fan Yang
Thomas Power
Sergio Aguilera Marinovic
Soshi Iba
Rana Soltani Zarrin
Dmitry Berenson
19
3
0
23 Aug 2024
APriCoT: Action Primitives based on Contact-state Transition for In-Hand
  Tool Manipulation
APriCoT: Action Primitives based on Contact-state Transition for In-Hand Tool Manipulation
Daichi Saito
Atsushi Kanehira
Kazuhiro Sasabuchi
Naoki Wake
Jun Takamatsu
Hideki Koike
Katsushi Ikeuchi
35
0
0
16 Jul 2024
What Foundation Models can Bring for Robot Learning in Manipulation : A
  Survey
What Foundation Models can Bring for Robot Learning in Manipulation : A Survey
Dingzhe Li
Yixiang Jin
A. Yong
Hongze Yu
Jun Shi
Xiaoshuai Hao
Peng Hao
Huaping Liu
Fuchun Sun
Bin Fang
AI4CE
LM&Ro
64
13
0
28 Apr 2024
Online augmentation of learned grasp sequence policies for more
  adaptable and data-efficient in-hand manipulation
Online augmentation of learned grasp sequence policies for more adaptable and data-efficient in-hand manipulation
E. Gordon
Rana Soltani-Zarrin
OffRL
16
5
0
04 Apr 2023
Deep Dynamics Models for Learning Dexterous Manipulation
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
143
407
0
25 Sep 2019
1