Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.11208
Cited By
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
22 September 2022
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases"
22 / 22 papers shown
Title
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
58
0
0
22 Jan 2025
Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
Richa Upadhyay
Ronald Phlypo
Rajkumar Saini
Marcus Liwicki
24
0
0
21 Jan 2025
Applications of fractional calculus in learned optimization
Teodor Alexandru Szente
James Harrison
M. Zanfir
C. Sminchisescu
56
0
0
22 Nov 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
19
1
0
17 Aug 2024
Leveraging Knowledge Distillation for Lightweight Skin Cancer Classification: Balancing Accuracy and Computational Efficiency
Niful Islam
Khan Md. Hasib
Fahmida Akter Joti
Asif Karim
Sami Azam
21
0
0
24 Jun 2024
μ
μ
μ
LO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
Charles-Étienne Joseph
Boris Knyazev
Edouard Oyallon
Irina Rish
Eugene Belilovsky
AI4CE
25
1
0
31 May 2024
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Miltiadis Kofinas
Boris Knyazev
Yan Zhang
Yunlu Chen
Gertjan J. Burghouts
E. Gavves
Cees G. M. Snoek
David W. Zhang
34
29
0
18 Mar 2024
Universal Neural Functionals
Allan Zhou
Chelsea Finn
James Harrison
17
12
0
07 Feb 2024
Investigation into the Training Dynamics of Learned Optimizers
Jan Sobotka
Petr Simánek
Daniel Vasata
13
0
0
12 Dec 2023
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
A. Moudgil
Boris Knyazev
Eugene Belilovsky
13
1
0
02 Dec 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
14
11
0
29 May 2023
HUB: Guiding Learned Optimizers with Continuous Prompt Tuning
Gaole Dai
Wei Yu Wu
Ziyu Wang
Jie Fu
Shanghang Zhang
Tiejun Huang
AIFin
9
0
0
26 May 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
29
5
0
21 Apr 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
21
18
0
13 Mar 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
8
4
0
03 Feb 2023
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
27
5
0
19 Jan 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
14
60
0
17 Nov 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
63
42
0
01 Feb 2022
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping
James Martens
Andy Ballard
Guillaume Desjardins
G. Swirszcz
Valentin Dalibard
Jascha Narain Sohl-Dickstein
S. Schoenholz
83
43
0
05 Oct 2021
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
99
714
0
13 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
237
11,568
0
09 Mar 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
1