ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.11222
  4. Cited By
Concept Activation Regions: A Generalized Framework For Concept-Based
  Explanations

Concept Activation Regions: A Generalized Framework For Concept-Based Explanations

22 September 2022
Jonathan Crabbé
M. Schaar
ArXivPDFHTML

Papers citing "Concept Activation Regions: A Generalized Framework For Concept-Based Explanations"

7 / 7 papers shown
Title
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
52
0
0
24 Apr 2025
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Frederik Pahde
Maximilian Dreyer
Leander Weber
Moritz Weckbecker
Christopher J. Anders
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
53
7
0
07 Feb 2022
Algorithmic Concept-based Explainable Reasoning
Algorithmic Concept-based Explainable Reasoning
Dobrik Georgiev
Pietro Barbiero
Dmitry Kazhdan
Petar Velivcković
Pietro Lió
51
15
0
15 Jul 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
  Stakeholder Perspective on XAI and a Conceptual Model Guiding
  Interdisciplinary XAI Research
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
32
301
0
15 Feb 2021
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
115
293
0
17 Oct 2019
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
219
2,098
0
28 Feb 2017
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
148
22,469
0
09 Jun 2011
1